Aim And Background: Artificial intelligence (AI) since it was introduced into dentistry, has become an important and valuable tool in many fields. It was applied in different specialties with different uses, for example, in diagnosis of oral cancer, periodontal disease and dental caries, and in the treatment planning and predicting the outcome of orthognathic surgeries. The aim of this comprehensive review is to report on the application and performance of AI models designed for application in the field of endodontics.

Materials And Methods: PubMed, Web of Science, and Google Scholar were searched to collect the most relevant articles using terms, such as AI, endodontics, and dentistry. This review included 56 papers related to AI and its application in endodontics.

Result: The applications of AI were in detecting and diagnosing periapical lesions, assessing root fractures, working length determination, prediction for postoperative pain, studying root canal anatomy and decision-making in endodontics for retreatment. The accuracy of AI in performing these tasks can reach up to 90%.

Conclusion: Artificial intelligence has valuable applications in the field of modern endodontics with promising results. Larger and multicenter data sets can give external validity to the AI models.

Clinical Significance: In the field of dentistry, AI models are specifically crafted to contribute to the diagnosis of oral diseases, ranging from common issues such as dental caries to more complex conditions like periodontal diseases and oral cancer. AI models can help in diagnosis, treatment planning, and in patient management in endodontics. Along with the modern tools like cone-beam computed tomography (CBCT), AI can be a valuable aid to the clinician. How to cite this article: Ahmed ZH, Almuharib AM, Abdulkarim AA, . Artificial Intelligence and Its Application in Endodontics: A Review. J Contemp Dent Pract 2023;24(11):912-917.

Download full-text PDF

Source
http://dx.doi.org/10.5005/jp-journals-10024-3593DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
16
intelligence application
8
application endodontics
8
endodontics review
8
diagnosis oral
8
oral cancer
8
dental caries
8
treatment planning
8
endodontics
6
application
5

Similar Publications

Aims: This study aims of determine the mediating role of individual innovativeness in the effect of nursing students' artificial intelligence anxiety on their robotic surgery knowledge level.

Design: This study was cross-sectional type.

Methods: It was conducted with 391 students.

View Article and Find Full Text PDF

Continuous Instrument Tracking in a Cerebral Corticectomy Ex Vivo Calf Brain Simulation Model: Face and Content Validation.

Oper Neurosurg (Hagerstown)

July 2024

Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada.

Background And Objectives: Subpial corticectomy involving complete lesion resection while preserving pial membranes and avoiding injury to adjacent normal tissues is an essential bimanual task necessary for neurosurgical trainees to master. We sought to develop an ex vivo calf brain corticectomy simulation model with continuous assessment of surgical instrument movement during the simulation. A case series study of skilled participants was performed to assess face and content validity to gain insights into the utility of this training platform, along with determining if skilled and less skilled participants had statistical differences in validity assessment.

View Article and Find Full Text PDF

Importance: Lung ultrasound (LUS) aids in the diagnosis of patients with dyspnea, including those with cardiogenic pulmonary edema, but requires technical proficiency for image acquisition. Previous research has demonstrated the effectiveness of artificial intelligence (AI) in guiding novice users to acquire high-quality cardiac ultrasound images, suggesting its potential for broader use in LUS.

Objective: To evaluate the ability of AI to guide acquisition of diagnostic-quality LUS images by trained health care professionals (THCPs).

View Article and Find Full Text PDF

Speech Technology for Automatic Recognition and Assessment of Dysarthric Speech: An Overview.

J Speech Lang Hear Res

January 2025

Centre for Language Studies, Radboud University, Nijmegen, the Netherlands.

Purpose: In this review article, we present an extensive overview of recent developments in the area of dysarthric speech research. One of the key objectives of speech technology research is to improve the quality of life of its users, as evidenced by the focus of current research trends on creating inclusive conversational interfaces that cater to pathological speech, out of which dysarthric speech is an important example. Applications of speech technology research for dysarthric speech demand a clear understanding of the acoustics of dysarthric speech as well as of speech technologies, including machine learning and deep neural networks for speech processing.

View Article and Find Full Text PDF

Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!