Characterization of N-glycosylation and its functional role in SIDT1-Mediated RNA uptake.

J Biol Chem

The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, China; Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, Jiangsu, China. Electronic address:

Published: February 2024

AI Article Synopsis

  • The SID-1 transmembrane proteins, SIDT1 and SIDT2, are involved in transporting nucleic acids within cells and play key roles in immunity and tumor growth.
  • Researchers utilized advanced mass spectrometry to identify and analyze the specific N-glycosylation sites on SIDT1 and SIDT2, which had been previously suggested but not clearly defined.
  • The study reveals that N-linked glycans are crucial for regulating various functions of SIDT1, including its presence on the cell surface, interaction with RNA, stability, and overall ability to uptake RNA, highlighting its potential for therapeutic uses.

Article Abstract

The mammalian SID-1 transmembrane family members, SIDT1 and SIDT2, are multipass transmembrane proteins that mediate the cellular uptake and intracellular trafficking of nucleic acids, playing important roles in the immune response and tumorigenesis. Previous work has suggested that human SIDT1 and SIDT2 are N-glycosylated, but the precise site-specific N-glycosylation information and its functional contribution remain unclear. In this study, we use high-resolution liquid chromatography tandem mass spectrometry to comprehensively map the N-glycosites and quantify the N-glycosylation profiles of SIDT1 and SIDT2. Further molecular mechanistic probing elucidates the essential role of N-linked glycans in regulating cell surface expression, RNA binding, protein stability, and RNA uptake of SIDT1. Our results provide crucial information about the potential functional impact of N-glycosylation in the regulation of SIDT1-mediated RNA uptake and provide insights into the molecular mechanisms of this promising nucleic acid delivery system with potential implications for therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850970PMC
http://dx.doi.org/10.1016/j.jbc.2024.105654DOI Listing

Publication Analysis

Top Keywords

rna uptake
12
sidt1 sidt2
12
n-glycosylation functional
8
sidt1-mediated rna
8
characterization n-glycosylation
4
functional role
4
role sidt1-mediated
4
rna
4
uptake
4
uptake mammalian
4

Similar Publications

Introduction: Osteosarcoma (OS), a prevalent metastatic cancer among young individuals, is associated with a grim prognosis. Long non-coding RNAs (lncRNAs), including C1QTNF1-AS1, are pivotal regulators of cancer cell proliferation and motility. As an oncogene, C1QTNF1-AS1 is implicated in various tumor types, such as colorectal, pancreatic, hepatocellular carcinomas, and OS.

View Article and Find Full Text PDF

A simple, economical, and high-yield method for polyethylene glycol-based extraction of follicular and serum-derived extracellular vesicles.

Tzu Chi Med J

October 2024

Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.

Objectives: The optimization of polyethylene glycol (PEG)-based extracellular vesicles (EVs) extraction from human follicular fluid (FF) and serum was investigated, and their functional analysis was confirmed. The PEG-based EV results were compared to the ExoQuick (ExoQ)-based EV.

Materials And Methods: FF-EVs and serum-EVs were extracted by using different concentrations of PEG (8000).

View Article and Find Full Text PDF

Nucleic acid medicine encompassing antisense oligonucleotides (ASOs) has garnered interest as a potential avenue for next-generation therapeutics. However, their therapeutic application has been constrained by challenges such as instability, off-target effects, delivery issues, and immunogenic responses. Furthermore, their practical utility in treating kidney diseases remains unrealized.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) is present in a healthy brain at low densities but can be markedly upregulated by excitatory input and by inflammogens. This study evaluated the sensitivity of the PET radioligand [C]-6-methoxy-2-(4-(methylsulfonyl)phenyl)--(thiophen-2-ylmethyl)pyrimidin-4-amine ([C]MC1) to detect COX-2 density in a healthy human brain. The specificity of [C]MC1 was confirmed using lipopolysaccharide-injected rats and transgenic mice expressing the human gene, with 120-min baseline and blocked scans using COX-1 and COX-2 selective agents.

View Article and Find Full Text PDF

Background: Osteosarcoma is the most common malignant bone tumor in children and adolescents, characterized by high disability and mortality rates. Over the past three decades, therapeutic outcomes have plateaued, underscoring the critical need for innovative therapeutic targets. Solute carrier (SLC) family transporters have been implicated in the malignant progression of a variety of tumors, however, their specific role in osteosarcoma remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!