The integrated analysis of host metabolome and intestinal microbiome is an opportunity to explore the complex therapeutic mechanisms of traditional Chinese medicines. Currently, researchers mainly employ various statistical correlation analytical methods to investigate metabolome-microbiome correlations. However, these conventional correlation techniques often focus on statistical correlations and their biological meanings are always ignored, especially the functional relevance between them. Here, we developed a novel enzyme-based functional correlation (EBFC) algorithm to further improve the interpretability and the identified scope of microbe-metabolite correlations based on the conventional Spearman's analysis. The proposed EBFC algorithm is successfully utilized to reveal the therapeutic mechanisms of Jian-Pi-Yi-Shen (JPYS) formula on the treatment of adenine-induced chronic kidney disease (CKD) rats. JPYS, a TCM formula for treating CKD, has beneficial clinical effects. We tentatively revealed the potential mechanism of JPYS for treating CKD rats from the perspective of the serum metabolome, gut microbiome, and their interactions. Specifically, 11 metabolites and 19 bacterial genera in the CKD rats were significantly regulated to approaching normal status after JPYS treatment, suggesting that JPYS could ameliorate the pathological symptoms of CKD rats by reshaping the disturbed metabolome and gut microbiota. Further correlation analysis between the significantly perturbed metabolites, microbiota, and the related enzymes provided more strong evidence for the study of host metabolism-microbiota interactions and the therapeutic mechanism of JPYS on CKD rats. In conclusion, these findings will help us to deeply understand the pathogenesis of CKD and provide new insights into the therapeutic mechanism of JPYS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2024.115973DOI Listing

Publication Analysis

Top Keywords

ckd rats
20
mechanism jpys
12
novel enzyme-based
8
enzyme-based functional
8
functional correlation
8
mechanisms traditional
8
traditional chinese
8
chinese medicines
8
therapeutic mechanisms
8
ebfc algorithm
8

Similar Publications

Increasing evidence suggests that dysbiosis of gut microbiota exacerbates chronic kidney disease (CKD) progression. Curcumin (CUR) has been reported to alleviate renal fibrosis in animal models of CKD. However, the relationship between CUR and gut microbiome in CKD remains unclear.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a conceivable new risk factor for cognitive disorder and dementia. Uremic toxicity, oxidative stress, and peripheral-central inflammation have been considered important mediators of CKD-induced nervous disorders. Nitric oxide (NO) is a retrograde neurotransmitter in synapses, and has vital roles in intracellular signaling in neurons.

View Article and Find Full Text PDF

Background/objectives: Chronic kidney disease (CKD) is a progressive pathological condition which results in the severe fibrosis of the kidneys. However, the mechanisms of CKD progression and fibrogenesis remain unclear. We wanted to examine the effects that apocynin and hyperbaric oxygen therapy (HBOT) have on renal function and structure in animals with CKD induced through 5/6 nephrectomy (5/6 Nx-L).

View Article and Find Full Text PDF

Antihypertensive Effects of a Sodium Thiosulfate-Loaded Nanoparticle in a Juvenile Chronic Kidney Disease Rat Model.

Antioxidants (Basel)

December 2024

Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

Sodium thiosulfate (STS), a precursor of hydrogen sulfide (HS), has demonstrated antihypertensive properties. Previous studies have suggested that HS-based interventions can prevent hypertension in pediatric chronic kidney disease (CKD). However, the clinical application of STS is limited by its rapid release and intravenous administration.

View Article and Find Full Text PDF

Secondary hyperparathyroidism (sHPT) is a significant clinical complication of CKD leading to bone abnormalities and cardiovascular disease. Current treatment based on activating the parathyroid calcium-sensing receptor (CaSR) using calcimimetics such as Cinacalcet, aims to decrease plasma PTH levels and inhibit the progression of parathyroid hyperplasia. In the present study, we found significant diurnal rhythmicity of Casr, encoding the Cinacalcet drug target in hyperplastic parathyroid glands (p = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!