A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alignment and mechanics evaluation for a compaction broach stem versus a blade style proximal press fit stem using 3-Dimensional planning. | LitMetric

AI Article Synopsis

  • 3D preoperative planning tools can enhance total hip arthroplasty (THA) outcomes by helping to compare the alignment of different stem designs based on patient-specific models.
  • The study specifically evaluates a compaction broach stem versus a proximal press fit stem, analyzing their fit, bone reaming requirements, and predicted postoperative mechanics.
  • Results indicated that the compaction broach stem achieved better alignment with less bone removal and improved stability compared to the press fit stem, highlighting the importance of continuing advancements in THA planning tools.

Article Abstract

Three-dimensional (3D) preoperative planning tools can be used to help plan and compare component alignment scenarios for different total hip arthroplasty systems to ultimately improve postoperative outcomes and patient satisfaction. The objective of this study is to use 3D preoperative planning tools based on patient-specific bone models to compare two different stem designs, specifically a compaction broach stem and a proximal press fit stem. The planner uses patient-specific proximal femoral bone morphology to suggest a specific implant size and placement. The planner then allows for preoperative predictions of component head positioning, stem fit within the canal, and potential cortical bone reaming that must be done, as well as postoperative predictions of stability and mechanics. The stems were evaluated to determine the accuracy of stem placement, the theoretical volumetric bone removal/reaming required to achieve a desired fit, and the associated postoperative mechanics. This study demonstrated that there was a difference in component alignment and predicted postoperative mechanics between a compaction broach stem and a press fit stem, with the compaction broach stem allowing for more accurate alignment with less required bone removal, resulting in improved postoperative stability and mechanics. This study also demonstrated that much of the stem misalignment for both systems occurred in the anterior/posterior direction. Overall, 3D preoperative planning offers significant benefits and novel intraoperative insight, and the industry should continue to enhance their THA preoperative planning tools.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2024.111950DOI Listing

Publication Analysis

Top Keywords

compaction broach
16
broach stem
16
preoperative planning
16
press fit
12
fit stem
12
planning tools
12
stem
11
proximal press
8
component alignment
8
stability mechanics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!