High-resolution Micro-C maps identified a specialized class of regulatory DNAs termed 'tethering elements' (TEs) in Drosophila. These 300-500-bp elements facilitate specific long-range genomic associations or loops. The POZ-containing transcription factor GAF (GAGA-associated factor) contributes to loop formation. Tether-tether interactions accelerate Hox gene activation by distal enhancers, and coordinate transcription of duplicated genes (paralogs) through promoter-promoter associations. Some TEs engage in ultra-long-range enhancer-promoter and promoter-promoter interactions (meta-loops) in the Drosophila brain. We discuss the basis for tether-tether specificity and speculate on the occurrence of similar elements in vertebrate genomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gde.2023.102151 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!