Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
AbstractMorphological variation is sometimes used as an indicator of environmental stress in animals. Here, we assessed how multiple morphological traits covaried in exposed to five common forms of environmental stress (high temperature, presence of predator cues, high salinity, low food abundance, and low Ca). We measured animal body length, body width, head width, eyespot diameter, and tail spine length along with mass in animals of five different ages (3, 6, 9, 12, and 15 d). There were strong allometric relationships among all morphological traits in reference animals and strong univariate effects of environmental stress on body mass and body length. We found that environmental stressors altered bivariate relationships between select pairwise combinations of morphological traits, with effects being dependent on animal age. Multivariate analyses further revealed high connectivity among body size-related traits but that eyespot diameter and tail spine length were less tightly associated with body size. Animals exposed to natural lake water with and without supplemental food also varied in morphology, with body size differences being suggestive of starvation and other unknown nutritional deficiencies. Yet our results demonstrate that the scaling of body morphological traits of is largely invariant with possible context-dependent plasticity in eye size and tail spine lengths. The strong coordination of traits indicates tight molecular coordination of body size during development despite strong and varied environmental stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/728316 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!