. To compare the dosimetric performance of three cone-beam breast computed tomography (BCT) scanners, using real-time Monte Carlo-based dose estimates obtained with the virtual clinical trials (VCT)-BREAST graphical processing unit (GPU)-accelerated platform dedicated to VCT in breast imaging. A GPU-based Monte Carlo (MC) code was developed for replicatingthe geometric, x-ray spectra and detector setups adopted, respectively, in two research scanners and one commercial BCT scanner, adopting 80 kV, 60 kV and 49 kV tube voltage, respectively. Our cohort of virtual breasts included 16 anthropomorphic voxelized breast phantoms from a publicly available dataset. For each virtual patient, we simulated exams on the three scanners, up to a nominal simulated mean glandular dose of 5 mGy (primary photons launched, in the order of 10-10per scan). Simulated 3D dose maps (recorded for skin, adipose and glandular tissues) were compared for the same phantom, on the three scanners. MC simulations were implemented on a single NVIDIA GeForce RTX 3090 graphics card.Using the spread of the dose distribution as a figure of merit, we showed that, in the investigated phantoms, the glandular dose is more uniform within less dense breasts, and it is more uniformly distributed for scans at 80 kV and 60 kV, than at 49 kV. A realistic virtual study of each breast phantom was completed in about 3.0 h with less than 1% statistical uncertainty, with 10primary photons processed in 3.6 s computing time.. We reported the first dosimetric study of the VCT-BREAST platform, a fast MC simulation tool for real-time virtual dosimetry and imaging trials in BCT, investigating the dose delivery performance of three clinical BCT scanners. This tool can be adopted to investigate also the effects on the 3D dose distribution produced by changes in the geometrical and spectrum characteristics of a cone-beam BCT scanner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ad2012 | DOI Listing |
Phys Med
January 2025
Department of Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni 5, 37024 Negrar di Valpolicella, VR, Italy; University of Brescia, Brescia, Italy.
Purpose: Adaptive MRgRT by 1.5 T MR-linac requires independent verification of the plan-of-the-day by the primary TPS (Monaco) (M). Here we validated a Monte Carlo-based dose-check including the magnetostatic field, SciMoCa (S).
View Article and Find Full Text PDFQuant Imaging Med Surg
December 2024
Department of Radiotherapy, Peking Union Medical College Hospital, Beijing, China.
Background: In the traditional computed tomography (CT) simulation process, patients need to undergo CT scans before and after injection of iodine-based contrast agent, resulting in a cumbersome workflow and additional imaging dose. Contrast-enhanced spectral CT can synthesize true contrast-enhanced (TCE) images and virtual noncontrast (VNC) images in a single scan without geometric misalignment. To improve work efficiency and reduce patients' imaging dose, we studied the feasibility of using VNC images for radiotherapy treatment planning, with true noncontrast (TNC) images as references and explored its dosimetric advantages compared to using TCE images.
View Article and Find Full Text PDFRadiat Res
January 2025
Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.
Estimation of absorbed organ doses used in computed tomography (CT) using time-intensive Monte Carlo simulations with virtual patient anatomic models is not widely reported in the literature. Using the library of computational phantoms developed by the University of Florida and the National Cancer Institute, we performed Monte Carlo simulations to calculate organ dose values for 9 CT categories representing the most common body regions and indications for imaging (reflecting low, routine, and high radiation dose examinations), stratified by patient age (in children) and effective diameter (in adults, using "diameter" as a measure of patient size). Our sample of 559,202 adult and 103,423 pediatric CT examinations was prospectively assembled between 2015-2020 from 156 imaging facilities from 27 healthcare organizations in 20 U.
View Article and Find Full Text PDFIntroduction: Computed tomography peritoneography (CTp) is pivotal for evaluating peritoneal dialysis (PD)-related complications, yet it comes with drawbacks, specifically exposure to iodinated contrast media (ICM). This study aimed to explore the feasibility of reducing ICM dosage utilizing spectral detector CT (SDCT).
Materials And Methods: 35 rabbits were strategically divided into 7 groups (A - G) according to the ICM concentration ratio in the injection protocol, with respective doses of 10, 15, 20, 25, 30, 40, and 50 mL/2L.
BMC Med Educ
November 2024
University Hospital Frankfurt Johann-Wolfgang-Geothe University Frankfurt on the Main Theodor-Stern-Kai, 760596 , Frankfurt am Main, Germany.
Introduction: Medical education, especially in ultrasound training, is undergoing significant changes. This study examines practical issues in ultrasound medical education, emphasizing state-of-the-art teaching methods, their effectiveness, and implementation challenges.
Methods: The study analyzed advancements in ultrasound education, including randomized controlled trials comparing peer-to-peer teaching with traditional faculty-led instruction.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!