A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient Structural Regulation Platform for the Controlled Synthesis of LiFePO Cathodes with Shorter Li-Ion Diffusion Paths. | LitMetric

The rate performance of lithium iron phosphate (LiFePO) is mainly limited by its poor electronic conductivity and slow Li-ion diffusion rate. Graphene-based materials are often compounded with LiFePO (LFP) to improve their rate performance, mainly because of their excellent electrical conductivity. Unlike most past composite work focusing on the conductive network between LFP and graphene, in this work, we further developed the functionality of graphene-based materials as nanoparticle carriers, where the nitrogen-doping strategy endows graphene with properties that make it an efficient structural regulation platform during the solvothermal process. Compared to reduced graphene oxide, not only does the nitrogen-doped sites confer more nucleation growth sites for LFP on the graphene surface during the solvothermal process, but also the localized formation of an EG-enriched microenvironment helps to further inhibit the in situ growth of LFP along [010]. The efficient structural regulation platform assisted the synthesis of (010)-oriented LFP with a smaller particle size, which further shortens the Li-ion diffusion paths. The optimized LFP composite electrode materials exhibit a discharge-specific capacity of 133.1 mA·h/g at 10C, which exceeds/is comparable to that of previously reported LFP compounded with graphene-based materials. This work broadens the functionality of graphene-based carriers and provides new ideas for the controllable synthesis of nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c03801DOI Listing

Publication Analysis

Top Keywords

efficient structural
12
structural regulation
12
regulation platform
12
li-ion diffusion
12
graphene-based materials
12
diffusion paths
8
rate performance
8
lfp graphene
8
functionality graphene-based
8
solvothermal process
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!