Exploration of Sweeping Effect: Droplet Coalescence Jumping of a Rolling and Static Droplet.

Langmuir

State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China.

Published: January 2024

The sweeping effect of merged droplets plays a key role in enhancing application performance due to the continuing coalescence caused by the horizontal jumping velocity. Most studies focused on static droplet coalescence jumping, while moving droplet coalescence is poorly understood. In this work, we experimentally and numerically study the coalescence of a rolling droplet and a static one. When the droplet radius ratio is larger than 0.8, as the dimensionless initial velocity increases and the vertical jumping velocity first decreases and then increases. The critical dimensionless initial velocity corresponding to the minimum vertical jumping velocity could be estimated as . When the droplet radius ratio is smaller than 0.8, the dimensionless initial velocity has a positive effect on the vertical jumping velocity. The mechanism of the vertical jumping velocity can be attributed to two parts: liquid bridge impact and retraction of the merged droplet. The squeezing effect generated by the initial velocity between the two droplets promotes the growth of the liquid bridge and enhances the impact effect of the liquid bridge but weakens the upward velocity accumulation caused by the retraction of the merged droplets. However, different from the vertical jumping velocity, the horizontal jumping velocity is approximately proportional to the dimensionless initial velocity. The outcome of our work elucidates a fundamental understanding of a rolling droplet coalescing with a static one.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c03364DOI Listing

Publication Analysis

Top Keywords

jumping velocity
28
initial velocity
20
vertical jumping
20
dimensionless initial
16
velocity
13
droplet coalescence
12
static droplet
12
liquid bridge
12
droplet
9
jumping
9

Similar Publications

The countermovement jump (CMJ) is a widely used test to assess lower body neuromuscular performance. This study aims to analyze the validity and reliability of an iOS application using artificial intelligence to measure CMJ height, force, velocity, and power in unloaded and loaded conditions. Twelve physically active participants performed 12 CMJs with external loads ranging from 0% to 70% of their body mass while being simultaneously monitored with a pair of force platforms and the My Jump Lab application.

View Article and Find Full Text PDF

Vertical Jump Height Estimation Using Low-Sampling IMU in Countermovement Jumps: A Feasible Alternative to Motion Capture and Force Platforms.

Sensors (Basel)

December 2024

Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy.

Vertical jump height from a countermovement jump is a widespread metric to assess the lower limb functionality. Motion capture systems and force platforms are considered gold standards to estimate vertical jump height; however, their use in ecological settings is limited. This study aimed to evaluate the feasibility of low-sampling-rate inertial measurement units as an alternative to the gold standard systems.

View Article and Find Full Text PDF

The Effects of Reverse Nordic Exercise Training on Measures of Physical Fitness in Youth Karate Athletes.

J Funct Morphol Kinesiol

December 2024

Institut Supérieur de Sport et de l'Éducation Physique du Kef, Université de Jendouba, Le Kef 7100, Tunisia.

In karate, the ability to execute high-velocity movements, particularly kicks and punches, is heavily dependent on the strength and power of the lower limb muscles, especially the knee extensors. As such, this study aimed to evaluate the effects of an 8-week eccentric training program utilizing the reverse Nordic exercise (RNE) integrated into karate training compared with regular karate training only on measures of physical fitness in youth karate athletes. Twenty-seven youth karatekas were recruited and allocated to either RNE group (n = 13; age = 15.

View Article and Find Full Text PDF

The study quantified total and high-intensity jump counts and assessed neuromuscular performance through countermovement jump (CMJ) force and velocity metrics by position. Twelve Division I female athletes (19.6 ± 1.

View Article and Find Full Text PDF

Resilin, an elastomeric protein with remarkable physical properties that outperforms synthetic rubbers, is a near-ubiquitous feature of the power amplification mechanisms used by jumping insects. Catapult-like mechanisms, which incorporate elastic energy stores formed from a composite of stiff cuticle and resilin, are frequently used by insects to translate slow muscle contractions into rapid-release recoil movements. The precise role of resilin in these jumping mechanisms remains unclear, however.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!