AI Article Synopsis

  • Quantum computers need to protect information from errors, which can be done by encoding it into a logical state suitable for quantum error correction.
  • The Gottesman-Kitaev-Preskill (GKP) qubit is a strong candidate for this purpose due to its multiqubit operations that work well at optical frequencies.
  • This research successfully demonstrated a GKP state using propagating light at telecommunication wavelengths, showing promising results in nonclassicality and non-Gaussianity, which are essential for future quantum computing developments.

Article Abstract

To harness the potential of a quantum computer, quantum information must be protected against error by encoding it into a logical state that is suitable for quantum error correction. The Gottesman-Kitaev-Preskill (GKP) qubit is a promising candidate because the required multiqubit operations are readily available at optical frequency. To date, however, GKP qubits have been demonstrated only at mechanical and microwave frequencies. We realized a GKP state in propagating light at telecommunication wavelength and verified it through homodyne measurements without loss corrections. The generation is based on interference of cat states, followed by homodyne measurements. Our final states exhibit nonclassicality and non-Gaussianity, including the trident shape of faint instances of GKP states. Improvements toward brighter, multipeaked GKP qubits will be the basis for quantum computation with light.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adk7560DOI Listing

Publication Analysis

Top Keywords

quantum computation
8
propagating light
8
gkp qubits
8
homodyne measurements
8
quantum
5
gkp
5
logical states
4
states fault-tolerant
4
fault-tolerant quantum
4
computation propagating
4

Similar Publications

High-Q Emission from Colloidal Quantum Dots Embedded in Polymer Quasi-BIC Metasurfaces.

Nano Lett

January 2025

Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.

View Article and Find Full Text PDF

Average Time-Delays for the Scattering of O Atoms from O Molecules.

J Chem Theory Comput

January 2025

Laboratoire ICB, UMR-6303 CNRS/uB, Université de Bourgogne, 9 avenue Alain Savary, 21078 Cedex Dijon, France.

We report full quantum-computed average microcanonical, initial state-specific, and canonical cumulative time-delays associated with the O + O scattering, presented as a function of total energy (in relation to an idealized molecular beam experiment) or temperature (for the properties of the gas phase in bulk conditions). We show that these quantities are well-defined and computable, with a temperature-dependent (canonical) time-delay presenting a smooth, monotonic decreasing behavior with temperature, despite an energy-dependent (microcanonical) time-delay of apparent chaotic character. We discuss differences in behavior when considering isotopic variations, O + OO and O + OO, with respect to the reference process O + OO and reveal a greater magnitude of the cumulative time-delay when genuinely reactive events can take place, in the presence of O.

View Article and Find Full Text PDF

BiTe, a member of the (Bi2)m(Bi2Te3)n homologous series, possesses natural van der Waals-like heterostructure with a Bi2 bilayer sandwiched between the two [Te-Bi-Te-Bi-Te] quintuple layers. BiTe exhibits both the quantum states of weak topological and topological crystalline insulators, making it a dual topological insulator and a suitable candidate for spintronics, quantum computing and thermoelectrics. Herein, we demonstrate that the chemical bonding in BiTe is to be metavalent, which plays a significant role in the pressure dependent change in the topology of the electronic structure Fermi surface.

View Article and Find Full Text PDF

The linear vibronic coupling (LVC) model is an approach for approximating how a molecular Hamiltonian changes in response to small changes in molecular geometry. The LVC framework thus has the ability to approximate molecular Hamiltonians at low computational expense but with quality approaching multiconfigurational calculations, when the change in geometry compared to the reference calculation used to parametrize it is small. Here, we show how the LVC approach can be used to project approximate spin Hamiltonians of a solvated lanthanide complex along a room-temperature molecular dynamics trajectory.

View Article and Find Full Text PDF

Nine metal complexes formed by three symmetric β-diketonates (, acetylacetonate (), 1,1,1,3,3,3-hexafluoro-acetylacetonate (), and 2,2,6,6-tetramethylheptane-3,5-dionate ()) and three metal ions (with three different coordination geometries, , Be - tetrahedral, Cu - square planar, and Pb - "swing" square pyramidal) were investigated. The study combines structural analyses, vibrational spectroscopic techniques, and quantum chemical calculations with the aim of bridging crystal structure, electronic structure, molecular topology, and far-infrared (FIR) spectroscopic characteristics. The effect of intramolecular interactions on the structural, electronic, and spectroscopic features is the center of this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!