We introduce a novel co-design method for autonomous moving agents' shape attributes and locomotion by combining deep reinforcement learning and evolution with user control. Our main inspiration comes from evolution, which has led to wide variability and adaptation in Nature and has significantly improved design and behavior simultaneously. Our method takes an input agent with optional user-defined constraints, such as leg parts that should not evolve or are only within the allowed ranges of changes. It uses physics-based simulation to determine its locomotion and finds a behavior policy for the input design that is used as a baseline for comparison. The agent is randomly modified within the allowed ranges, creating a new generation of several hundred agents. The generation is trained by transferring the previous policy, which significantly speeds up the training. The best-performing agents are selected, and a new generation is formed using their crossover and mutations. The next generations are then trained until satisfactory results are reached. We show a wide variety of evolved agents, and our results show that even with only 10% of allowed changes, the overall performance of the evolved agents improves by 50%. If more significant changes to the initial design are allowed, our experiments' performance will improve even more to 150%. Our method significantly improved motion tasks without changing body structures, and it does not require considerable computation resources as it works on a single GPU and provides results by training thousands of agents within 30 minutes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2024.3355745 | DOI Listing |
Green Chem
January 2025
Department of Materials and Environmental Chemistry, Stockholm University SE-106 91 Stockholm Sweden
Lignin has emerged as a sustainable alternative to fossil-based polymers in advanced materials such as photonics. However, current methods for preparing photonic lignin materials are limited by non-benign organic solvents and low production yields. In this work, we present a highly efficient process that enables the production of photonic glasses with yields ranging from 48% to 72%, depending on the size of the lignin nanoparticles obtained from herbaceous soda lignin, softwood kraft lignin, and hardwood organosolv lignin.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Cardiology Department, Université de Mons, 7000 Mons, Belgium.
Background: Neuromodulation has been shown to increase the efficacy of atrial fibrillation (AF) ablation procedures. However, despite its ability to influence the autonomic nervous system (ANS), the exact mechanism of action remains unclear. The activity of the ANS via the intracardiac nervous system (ICNS) can be inferred from heart rate variability (HRV).
View Article and Find Full Text PDFThe selective amination of aromatic C-H bonds is a powerful strategy to access aryl amines, functionalities found in many pharmaceuticals and agrochemicals. Despite advances in the field, a platform for the direct, selective C-H amination of electronically diverse (hetero)arenes, particularly electron-deficient (hetero)arenes, remains an unaddressed fundamental challenge. In addition, many (hetero)arenes present difficulty in common selective pre-functionalization reactions, such as halogenation , or metal-catalyzed borylation and silylation .
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins.
View Article and Find Full Text PDFACS Omega
January 2025
Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!