Effect of brackish water irrigation on cadmium migration in a soil-maize system.

Environ Sci Pollut Res Int

Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Qinhuangdao, 066102, China.

Published: February 2024

Phytoremediation is an effective way to reduce heavy metal content in agricultural soil. The effects of brackish water irrigation on phytoremediation efficiency of plants have not yet been completely understood. In this study, the effects of brackish water irrigation on cadmium (Cd) uptake by maize as the phytoremediator were investigated. In a pot experiment, maize seedlings were grown in soil with exogenously added Cd (0, 5, 10, or 15 mg kg) and irrigated with deionized water (T1), natural brackish water (T2), or water with NaCl with salinity equal to that of natural brackish water (T3). Salt stress and cation antagonism caused by brackish water affected maize plant growth and Cd uptake. Under 5, 10, and 15 mg kg Cd, Cd accumulation in maize shoots was 5.55, 7.08, and 5.71 μg plant; 4.08, 3.04, and 5.38 μg plant; and 2.48, 3.44, and 5.33 μg plant under the T1, T2, and T3 treatments, respectively. Cd accumulation in the shoots was significantly lower under the T2 and T3 treatments than under the T1 treatment at 5 and 10 mg kg Cd; however, no significant differences were observed among all treatments at 15 mg kg Cd. These findings indicated that phytoremediation efficiency decreased in response to both salt stress and cation antagonism caused by brackish water under low soil-Cd concentrations; however, this effect was negligible under high soil-Cd concentration. Therefore, brackish water irrigation can be considered for the phytoremediation of soils contaminated with high Cd levels to save freshwater resources.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-32041-6DOI Listing

Publication Analysis

Top Keywords

brackish water
32
water irrigation
16
water
9
brackish
8
irrigation cadmium
8
effects brackish
8
phytoremediation efficiency
8
natural brackish
8
salt stress
8
stress cation
8

Similar Publications

Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).

View Article and Find Full Text PDF

Total synthesis and target identification of marine cyclopiane diterpenes.

Nat Commun

December 2024

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.

View Article and Find Full Text PDF

Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota.

Nat Commun

December 2024

AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain.

Marine brown algae produce the highly recalcitrant polysaccharide fucoidan, contributing to long-term oceanic carbon storage and climate regulation. Fucoidan is degraded by specialized heterotrophic bacteria, which promote ecosystem function and global carbon turnover using largely uncharacterized mechanisms. Here, we isolate and study two Planctomycetota strains from the microbiome associated with the alga Fucus spiralis, which grow efficiently on chemically diverse fucoidans.

View Article and Find Full Text PDF

What little we know about how microbiomes change over the course of host dispersal has been gleaned from simulations or snapshot sampling of microbiomes of hosts undertaking regular, cyclical migrations. These studies suggest that major changes in both microbiome richness and turnover occur in response to long-distance movements, but we do not yet know how rare or sporadic dispersal events for non-migratory organisms might affect the microbiomes of their hosts. Here we directly examine the microbiomes of rafting seaweed, leveraging host genomic analyses, amplicon sequencing, and oceanographic modelling to study the impacts of ecological dispersal of hosts on their microbiomes.

View Article and Find Full Text PDF

Given that reproductive physiology is highly sensitive to thermal stress, there is increasing concern about the effects of climate change on animal fertility. Even a slight reduction in fertility can have consequences for population growth and survival, so it is critical to better understand and predict the potential effects of climate change on reproductive traits. We synthesised 1894 effect sizes across 276 studies on 241 species to examine thermal effects on fertility in aquatic animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!