Karst mountainous areas in Southwest China, the world's largest bare karst area, are faced with growing water shortages. Rainwater harvesting plays an important role in alleviating water shortage. However, there remains a substantial gap in the research regarding the water quality of tanks. Water samples were seasonally collected from ten tanks to investigate the physicochemical properties, microbial communities, and their key influencing factors. The result showed that pH, turbidity, chroma, DOC, and COD exceeded drinking water guidelines. The alkaline pH value and the deterioration of sensory properties was the main feature of tank water, from which the over-standard rate of the uncleaned water tanks was higher. Moreover, principal component analyses suggested that tank water quality was influenced by human activities, catchment areas, and material cycling processes within the tanks, of which in-tank microbial activities were the most important driving factors in water quality variation. Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and Verrucomicrobia were the predominant bacterial phyla in water tanks. Acinetobacter, Cyanobium-PCC-6307, CL500-29-marine-group, Candidatus-Aquiluna, and Exiguobacterium were the most abundant genera. The bacterial communities were significantly affected by the management practices. Higher relative abundance of Cyanobacteria and lower relative abundance of Proteobacteria was detected in the uncleaned tanks, which was a sign of tank water quality deterioration. The microbial community structure was closely related to the environmental factors. There was evidence that the water quality was affected by the existence of a microecosystem dominated by photosynthetic microorganisms in the water tanks. In addition, Acinetobacter, Enterobacter, Pseudomonas, and Legionella identified as the potential opportunistic pathogenic genera were frequently detected but the relative abundances except Acinetobacter were low in the tanks. Overall, our findings indicated that management style influences water quality and bacterial communities of tank water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-31959-1DOI Listing

Publication Analysis

Top Keywords

water quality
28
water
17
water tanks
16
tank water
16
tanks
9
karst mountainous
8
southwest china
8
bacterial communities
8
relative abundance
8
quality
6

Similar Publications

Water quality testing does not recognise antimicrobial resistance (AMR) and is often limited to indicators of faecal contamination Escherichia coli and Enterococcus species. In Europe, data on AMR in drinking water is scarce. In Ireland, as in many countries, household drinking water is supplied via mains or via private wells or water schemes.

View Article and Find Full Text PDF

Adoption intensity of soil and water conservation techniques in Burkina Faso is influenced by farmers' preferences for their attributes.

Sci Rep

January 2025

Center for Economic and Social Studies, Documentation and Research (CEDRES), Thomas Sankara University (UTS), 12 BP 417, Ouagadougou 12, Burkina Faso.

Soil degradation is a major cause of agricultural productivity decrease in sub-Saharan Africa. In Burkina Faso, efforts to reduce this environmental issue has emerged since several decades. However, most of the techniques developed are rarely adopted by farmers.

View Article and Find Full Text PDF

In China, a significant amount of coal fly ash is stored or used for landfill reclamation. The contaminants in coal fly ash (CFA) leachate can cause regional soil and groundwater contamination during long-term storage. This paper focuses on a coal gangue comprehensive utilisation power plant in Fenyang City, Shanxi Province, China, where the leaching characteristics of CFA were investigated by leaching tests.

View Article and Find Full Text PDF

Understanding the influence of stratification for mine water management: a comparative study.

Sci Rep

January 2025

South African Research Chair for Acid Mine Drainage Treatment, Tshwane University of Technology (TUT), Private Bag X680, Pretoria, 0001, South Africa.

Managing mine water in the best possible way is of great importance and depends on various factors like environmental protection, regulatory compliance and human health. To understand the complex chemical and hydrodynamic processes within the mine pool, it is critical to establish effective practices and management strategies. This study focuses on the characterisation of hydrodynamic processes affecting flooded underground mines, emphasising the importance of density stratification.

View Article and Find Full Text PDF

Water quality management is a critical aspect of environmental sustainability, particularly in arid and semi-arid regions such as Iran where water scarcity is compounded by quality degradation. This study delves into the causal relationships influencing water quality, focusing on Total Dissolved Solids (TDS) as a primary indicator in the Karkheh River, southwest Iran. Utilizing a comprehensive dataset spanning 50 years (1968-2018), this research integrates Machine Learning (ML) techniques to examine correlations and infer causality among multiple parameters, including flow rate (Q), Sodium (Na), Magnesium (Mg), Calcium (Ca), Chloride (Cl), Sulfate (SO), Bicarbonates (HCO), and pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!