Purpose: Intracytoplasmic sperm injection (ICSI) imparts physical stress on the oolemma of the oocyte and remains among the most technically demanding skills to master, with success rates related to experience and expertise. ICSI is also time-consuming and requires workflow management in the laboratory. This study presents a device designed to reduce the pressure on the oocyte during injection and investigates if this improves embryo development in a porcine model. The impact of this device on laboratory workflow was also assessed.
Methods: Porcine oocytes were matured in vitro and injected with porcine sperm by conventional ICSI (C-ICSI) or with microICSI, an ICSI dish that supports up to 20 oocytes housed individually in microwells created through microfabrication. Data collected included set-up time, time to align the polar body, time to perform the injection, the number of hand adjustments between controllers, and degree of invagination at injection. Developmental parameters measured included cleavage and day 6 blastocyst rates. Blastocysts were differentially stained to assess cell numbers of the inner cell mass and trophectoderm. A pilot study with human donated MII oocytes injected with beads was also performed.
Results: A significant increase in porcine blastocyst rate for microICSI compared to C-ICSI was observed, while cleavage rates and blastocyst cell numbers were comparable between treatments. Procedural efficiency of microinjection was significantly improved with microICSI compared to C-ICSI in both species.
Conclusion: The microICSI device demonstrated significant developmental and procedural benefits for porcine ICSI. A pilot study suggests human ICSI should benefit equally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894805 | PMC |
http://dx.doi.org/10.1007/s10815-023-03018-0 | DOI Listing |
Animals (Basel)
December 2024
College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
Pig production through crossbreeding methods is a pillar of the swine industry; however, research on the fertilization ability of male pigs in crossbreeds is lacking. Therefore, this study investigated the effects of Duroc sperm (DS) and Landrace sperm (LS) on fertility in Yorkshire × Landrace × Duroc (YLD) oocytes. Sperm were collected from the Duroc and Landrace species, and sperm characteristics, viability, and acrosome reactions were analyzed using flow cytometry.
View Article and Find Full Text PDFAnim Reprod Sci
December 2024
China-Japan Union Hospital of Jilin University, Rehabilitation Medicine Department, Changchun, Jilin, China. Electronic address:
Assisted reproductive technology (ART) is widely used to address infertility and enhance reproductive outcomes in livestock. Among various ART techniques, in vitro maturation (IVM) is commonly used to obtain high-quality oocytes but is susceptible to oxidative stress. In traditional Chinese medicine, Rhizoma Atractylodis Macrocephalae (Bai Zhu) is used to enhance maternal and fetal health.
View Article and Find Full Text PDFTheriogenology
December 2024
College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:
To improve the efficiency of in-vitro-produced (IVP) porcine embryos, we focused on the events that usually occur during in-vivo embryonic transit from the oviduct to the uterus. Extracellular vesicles (EVs) are released by different mammalian cells and are imperative for intercellular communication and reflect the cell's physiological state. Based on these characteristics, EVs were isolated from oviductal and uterine fluid to imitate the in vivo environment and improve the efficiency of IVP embryos.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea.
Objective: Myo-inositol (Myo-Ins), the most abundant form of inositol, is an antioxidant and plays a crucial role in the development and reproduction of mammals and humans. However, information elucidating the role of Myo-Ins in porcine embryonic development after parthenogenetic activation (PA) is still lacking. Therefore, we investigated the effect of Myo-Ins on porcine embryos and its underlying mechanisms.
View Article and Find Full Text PDFVet Sci
December 2024
Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China.
Caffeic acid phenethyl ester (CAPE) is one of the main active components of the natural medicine propolis, which has antioxidant, anti-tumor, and immunomodulatory activities. This study aimed to analyze the effects and underlying mechanisms of CAPE added to the medium of in vitro cultures on the developmental competence, mitochondria, and endoplasmic reticulum of porcine embryos. The results demonstrated that 1 nM of CAPE significantly improved the quality of porcine embryos, increased the rate of blastocyst formation, and enhanced the proliferation ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!