Geographic barriers are frequently invoked to explain genetic structuring across the landscape. However, inferences on the spatial and temporal origins of population variation have been largely limited to evolutionary neutral models, ignoring the potential role of natural selection and intrinsic genomic processes known as genomic architecture in producing heterogeneity in differentiation across the genome. To test how variation in genomic characteristics (e.g. recombination rate) impacts our ability to reconstruct general patterns of differentiation between species that cooccur across geographic barriers, we sequenced the whole genomes of multiple bird populations that are distributed across rivers in southeastern Amazonia. We found that phylogenetic relationships within species and demographic parameters varied across the genome in predictable ways. Genetic diversity was positively associated with recombination rate and negatively associated with species tree support. Gene flow was less pervasive in genomic regions of low recombination, making these windows more likely to retain patterns of population structuring that matched the species tree. We further found that approximately a third of the genome showed evidence of selective sweeps and linked selection, skewing genome-wide estimates of effective population sizes and gene flow between populations toward lower values. In sum, we showed that the effects of intrinsic genomic characteristics and selection can be disentangled from neutral processes to elucidate spatial patterns of population differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823491PMC
http://dx.doi.org/10.1093/gbe/evae002DOI Listing

Publication Analysis

Top Keywords

genomic architecture
8
population structuring
8
geographic barriers
8
intrinsic genomic
8
genomic characteristics
8
recombination rate
8
species tree
8
gene flow
8
patterns population
8
genomic
6

Similar Publications

Childhood obesity poses a significant public health challenge, yet the molecular intricacies underlying its pathobiology remain elusive. Leveraging extensive multi-omics profiling (methylome, miRNome, transcriptome, proteins and metabolites) and a rich phenotypic characterization across two parts of Europe within the population-based Human Early Life Exposome project, we unravel the molecular landscape of childhood obesity and associated metabolic dysfunction. Our integrative analysis uncovers three clusters of children defined by specific multi-omics profiles, one of which characterized not only by higher adiposity but also by a high degree of metabolic complications.

View Article and Find Full Text PDF

The established consensus sequence for human 5' splice sites masks the presence of two major splice site classes defined by preferential base-pairing potentials with either U5 snRNA loop 1 or the U6 snRNA ACAGA box. The two 5' splice site classes are separable in genome sequences, sensitized by specific genotypes and associated with splicing complexity. The two classes reflect the commitment to 5' splice site usage occurring primarily during 5' splice site transfer to U6 snRNA.

View Article and Find Full Text PDF

Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments.

View Article and Find Full Text PDF

QOT: Quantized Optimal Transport for sample-level distance matrix in single-cell omics.

Brief Bioinform

November 2024

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States.

Single-cell technologies have enabled the high-dimensional characterization of cell populations at an unprecedented scale. The innate complexity and increasing volume of data pose significant computational and analytical challenges, especially in comparative studies delineating cellular architectures across various biological conditions (i.e.

View Article and Find Full Text PDF

Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!