AI Article Synopsis

  • MnBi2Te4 is capable of generating unique topological quantum states due to its special structure, making it an interesting subject for research.
  • Using a diamond anvil cell, high-pressure studies show that the material experiences an irreversible transition from metal to semiconductor at pressures below 15 GPa, while exceeding 17 GPa leads to structural damage and a partial amorphous state.
  • These findings illustrate the phase transition behaviors of MnBi2Te4 under high pressure and open new avenues for exploring topological phases in materials.

Article Abstract

MnBi2Te4 can generate a variety of exotic topological quantum states, which are closely related to its special structure. We conduct comprehensive multiple-cycle high-pressure research on MnBi2Te4 by using a diamond anvil cell to study its phase transition behaviors under high pressure. As observed, when the pressure does not exceed 15 GPa, the material undergoes an irreversible metal-semiconductor-metal transition, whereas when the pressure exceeds 17 GPa, the layered structure is damaged and becomes irreversibly amorphous due to the lattice distortion caused by compression, but it is not completely amorphous, which presents some nano-sized grains after decompression. Our investigation vividly reveals the phase transition behaviors of MnBi2Te4 under high pressure cycling and paves the experimental way to find topological phases under high pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0184624DOI Listing

Publication Analysis

Top Keywords

transition behaviors
12
high pressure
12
behaviors mnbi2te4
8
phase transition
8
pressure
5
pressure-cycling induced
4
transition
4
induced transition
4
mnbi2te4
4
mnbi2te4 mnbi2te4
4

Similar Publications

Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.

View Article and Find Full Text PDF

Background: There is a global need for synthetic speech development in multiple languages and dialects, as many children who cannot communicate using their natural voice struggle to find synthetic voices on high-technology devices that match their age, social and linguistic background.

Aims: To document multiple stakeholders' perspectives surrounding the quality, acceptability and utility of newly created synthetic speech in three under-resourced South African languages, namely South African English, Afrikaans and isiXhosa.

Methods & Procedures: A mixed methods research design was selected.

View Article and Find Full Text PDF

Intra-Individual Stable Isotope Variation Tracks Brazilian Contemporary Dietary and Nutritional Transition.

Am J Biol Anthropol

January 2025

Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.

Introduction: Contemporary dietary and nutritional transitions are commonplace, but difficult to study directly. In Brazil, and Latin America, this generalized process, leading to current obesity and malnutrition problems, started more than four decades ago. Although body weight and food availability are used to measure changes, not much information on food consumption and nutrition exist.

View Article and Find Full Text PDF

This study aims to shed light on the mechanism and kinetics of 1,4-dioxane degradation by hydroxyl radical (OH) across various solvation conditions to evaluate electronic and structural properties at the MP2/aug-cc-pVTZ level. Transition states (TS) structures determined in the gas phase and SMD solvation model reveal similar hydrogen abstraction patterns. In contrast, the explicit solvation model (ES) introduces significant changes, suggesting a kinetic preference for axial pathways.

View Article and Find Full Text PDF

Deciphering the Complexity of Step Profiles on Vicinal Si(001) Surfaces Through Multiscale Simulations.

Small

January 2025

State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.

The behavior of vicinal Si(001) surfaces are a subject of intense research for years, yet the mechanism behind its step modulation remains unresolved. Step B, in particular, can meander randomly or form a periodic zigzag profile, a surface phenomenon that has eluded explanation due to the lack of appropriate simulation tools. Here, a multiscale simulation strategy, enhanced by machine learning potentials are proposed, to investigate this mesoscale behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!