Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chemical quality control of nuclear fuel, particularly the determination of Pu and U contents by chemical methods, results in analytical acidic aqueous waste solutions from which Pu and U must be recovered efficiently for the remediation of radioactive wastes. Reported methods involve several complicated steps requiring addition of chemical oxidants/reductants for valence adjustments and generation of secondary wastes, thereby making the recovery process cumbersome. Herein, we report a novel two-step electrochemical approach for Pu and U recovery from acidic aqueous waste solutions containing different metallic impurities (Fe, Cr, Mn, Cd, Al, Ni, Co, Zn, and Mg) by bulk electrolysis using a Pt gauze electrode. Pu and U are recovered from these waste solutions in a two-step process: (i) bulk electrolysis of the mixed solution at a constant potential of 0.1 V that results in the reduction of PuO to Pu followed by the precipitation of Pu as K(KPu)(SO), which is then filtered and separated and (ii) the filtrate solution is again subjected to bulk electrolysis at a constant potential of -0.35 V resulting in the reduction of UO to U. The U is then precipitated as K(KU)(SO), which is filtered and separated, leading to a Pu- and U-free aqueous acidic waste solutions. Biamperometry shows that 97.8% and 99.1% recovery of Pu and U, respectively, is possible, and emission spectrometry confirms the purity of K(KPu)(SO) and K(KU)(SO). Because of its operational simplicity, potential for remote handling, and excellent extraction efficiency, the present methodology can easily replace traditional methods for the recovery of Pu and U from acidic aqueous waste solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c03926 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!