AI Article Synopsis

  • - The study compares two Omicron sublineages (BA.2.75 and BA.5.2) with the Delta variant to understand their effects on infection and immune response using a mouse model engineered to study human diseases.
  • - Findings revealed that while Delta caused more severe lung damage, Omicron variants led to different immune responses, with BA.5.2 showing strong immune suppression and greater neurodegeneration compared to BA.2.75.
  • - The differences in replication and pathogenicity among the variants are linked to how their Spike proteins interact with host cells, suggesting Omicron variants may have unique infectious characteristics that could impact neurological health.

Article Abstract

The Coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global threat, exacerbated by the emergence of viral variants. Two variants of SARS-CoV-2, Omicron BA.2.75 and BA.5, led to global infection peaks between May 2022 and May 2023, yet their precise characteristics in pathogenesis are not well understood. In this study, we compared these two Omicron sublineages with the previously dominant Delta variant using a human angiotensin-converting enzyme 2 knock-in mouse model. As expected, Delta exhibited higher viral replication in the lung and brain than both Omicron sublineages which induced less severe lung damage and immune activation. In contrast, the Omicron variants especially BA.5.2 showed a propensity for cellular proliferation and developmental pathways. Both Delta and BA.5.2 variants, but not BA.2.75, led to decreased pulmonary lymphocytes, indicating differential adaptive immune response. Neuroinvasiveness was shared with all strains, accompanied by vascular abnormalities, synaptic injury, and loss of astrocytes. However, Immunostaining assays and transcriptomic analysis showed that BA.5.2 displayed stronger immune suppression and neurodegeneration, while BA.2.75 exhibited more similar characteristics to Delta in the cortex. Such differentially infectious features could be partially attributed to the weakened interaction between Omicron Spike protein and host proteomes decoded via co-immunoprecipitation followed by mass spectrometry in neuronal cells. Our present study supports attenuated replication and pathogenicity of Omicron variants but also highlights their newly infectious characteristics in the lung and brain, especially with BA.5.2 demonstrating enhanced immune evasion and neural damage that could exacerbate neurological sequelae.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.29357DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 omicron
8
omicron sublineages
8
lung brain
8
omicron variants
8
omicron
7
ba52
5
delta
5
variants
5
differential pathogenic
4
pathogenic molecular
4

Similar Publications

The COVID-19 pandemic posed a threat to global society. Delta and Omicron are concerning variants due to the risk of increasing human-to-human transmissibility and immune evasion. This study aims to evaluate the binding ability of these variants toward the angiotensin-converting enzyme 2 receptor and antibodies using a computational approach.

View Article and Find Full Text PDF

COVID-19 has proved to be a global health crisis during the pandemic, and the emerging JN.1 variant is a potential threat. Therefore, finding alternative antivirals is of utmost priority.

View Article and Find Full Text PDF

SARS-CoV-2 Infection and Liver Transplant: How Are We Now?

Transplant Proc

January 2025

Gastroenterolgy and Hepatology Department, Group of Clinical and Translational Research in Liver Diseases, Research Institution Valdecilla (IDIVAL), University Hospital Marqués de Valdecilla, Santander, Spain. Electronic address:

Background: The Omicron variant of SARS-CoV-2 emerged as a new variant of concern, characterized by high transmissibility and lower severity compared with previous variants, and became the majority variant in the sixth wave in Spain. This study aims to assess the impact of SARS-CoV-2 infection on liver transplant recipients (LTRs) during 2023 in the population of Cantabria.

Methods: The study included 295 LTRs undergoing follow-up at the Liver Transplant Unit of the Marqués de Valdecilla University Hospital.

View Article and Find Full Text PDF

New COVID-19 vaccination recommendations in Spain: Optimizing for next seasons.

Enferm Infecc Microbiol Clin (Engl Ed)

January 2025

Centro Nacional de Gripe de Valladolid (GISRS/WHO), Spain. Electronic address:

Despite high initial vaccination rates, Spain's current COVID-19 vaccination coverage in recommended groups does not meet WHO targets. For the upcoming season, challenges include revising vaccination age, updating risk groups, and unifying criteria with flu vaccine co-administration. European Commission's advance purchase agreements limit access to certain vaccines, and the need for vaccines effective against current variants adds administrative complexities.

View Article and Find Full Text PDF

Viral nucleic acid load in the milk of lactating mothers with COVID-19 and the prognosis of infants.

Sci Rep

January 2025

Department of Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Lequn Branch, No. 3302 Jilin Road, Changchun, 130021, China.

The global spread of the novel coronavirus disease 2019, caused by SARS-CoV-2 virus, impacts individuals of all age groups, including lactating women and children. Concerns have been raised regarding the potential transmission of SARS-CoV-2 from mother to child, following the discovery of SARS-CoV-2 RNA in human milk. Therefore, this study aims to investigate whether the Omicron novel coronavirus variants are transmitted through human milk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!