Lipid-based nanoparticles (LNP) have shown significant progress in delivering mRNA for therapeutics, particularly with the success of coronavirus disease 2019 (COVID-19) vaccines. However, there are still challenges, such as organ-specific targeting, sustained protein expression, immunogenicity, and storage that need to be addressed. Therefore, there is interest in developing additional nano drug delivery systems (DDS) to complement LNP technology. Some of these include polymer, lipid-polymer hybrid, organic/inorganic hybrid nanostructure, and inorganic nanoparticle. In our opinion, LNP technology may not be suitable for every disease scenario in categories such as infection disease, cancer, pulmonary disease, autoimmune disorders and genetic rare disease (among others). This is because different diseases may require distinct administration routes, doses, and treatment durations, as well as considerations for biological barriers that may lower the efficacy and/or exert safety concern. In this perspective, we will highlight the need and potential for enhancing the diversity of nano delivery platforms for mRNA-based nanotherapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790206PMC
http://dx.doi.org/10.1515/mr-2023-0010DOI Listing

Publication Analysis

Top Keywords

nano delivery
8
delivery platforms
8
platforms mrna-based
8
mrna-based nanotherapeutics
8
lnp technology
8
disease
5
enrichment nano
4
nanotherapeutics lipid-based
4
lipid-based nanoparticles
4
nanoparticles lnp
4

Similar Publications

Rectifying the Crosstalk between the Skeletal and Immune Systems Improves Osteoporosis Treatment by Core-Shell Nanocapsules.

ACS Nano

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Contemporary osteoporosis treatment often neglects the intricate interactions among immune cells, signaling proteins, and cytokines within the osteoporotic microenvironment. Here, we developed core-shell nanocapsules composed of a cationized lactoferrin core and an alendronate polymer shell. By tuning the size of these nanocapsules and leveraging the alendronate shell, we enabled precise delivery of small interfering RNA targeting the Semaphorin 4D gene (siSema4D) to specific bone sites.

View Article and Find Full Text PDF

In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Co-Delivery of Dacarbazine and miRNA 34a Combinations to Synergistically Improve Malignant Melanoma Treatments.

Drug Des Devel Ther

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People's Republic of China.

Purpose: The incidence of malignant melanoma (MM) has risen over the past three decades, and despite advancements in treatment, there is still a need to improve treatment modalities. This study developed a promising strategy for tumor-targeted co-delivery of Dacarbazine (DTIC) and miRNA 34a-loaded PHRD micelles (Co-PHRD) for combination treatment of MM.

Methods: To construct the dual drug-loaded delivery system Co-PHRD, poly (L-arginine)-poly (L-histidine)-polylactic acid (PLA) was employed as a building block.

View Article and Find Full Text PDF

Innovative Applications of Bacteria and Their Derivatives in Targeted Tumor Therapy.

ACS Nano

January 2025

Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.

Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!