A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inattention and Uncertainty in the Predictive Brain. | LitMetric

Inattention and Uncertainty in the Predictive Brain.

Front Neuroergon

Cognitive Science, Traffic Research Unit, Faculty of Arts, University of Helsinki, Helsinki, Finland.

Published: September 2021

Negative effects of inattention on task performance can be seen in many contexts of society and human behavior, such as traffic, work, and sports. In traffic, inattention is one of the most frequently cited causal factors in accidents. In order to identify inattention and mitigate its negative effects, there is a need for quantifying attentional demands of dynamic tasks, with a credible basis in cognitive modeling and neuroscience. Recent developments in cognitive science have led to theories of cognition suggesting that brains are an advanced prediction engine. The function of this prediction engine is to support perception and action by continuously matching incoming sensory input with top-down predictions of the input, generated by hierarchical models of the statistical regularities and causal relationships in the world. Based on the capacity of this predictive processing framework to explain various mental phenomena and neural data, we suggest it also provides a plausible theoretical and neural basis for modeling attentional demand and attentional capacity "in the wild" in terms of uncertainty and prediction error. We outline a predictive processing approach to the study of attentional demand and inattention in driving, based on neurologically-inspired theories of uncertainty processing and experimental research combining brain imaging, visual occlusion and computational modeling. A proper understanding of uncertainty processing would enable comparison of driver's uncertainty to a normative level of appropriate uncertainty, and thereby improve definition and detection of inattentive driving. This is the necessary first step toward applications such as attention monitoring systems for conventional and semi-automated driving.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790892PMC
http://dx.doi.org/10.3389/fnrgo.2021.718699DOI Listing

Publication Analysis

Top Keywords

negative effects
8
prediction engine
8
predictive processing
8
attentional demand
8
uncertainty processing
8
inattention
5
uncertainty
5
inattention uncertainty
4
uncertainty predictive
4
predictive brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!