AI Article Synopsis

  • RNA processing is essential for regulating functions in all living organisms.
  • A new family of endoribonucleases, which are enzymes that cut RNA, has been found in bacteria and is structurally conserved.
  • The study reveals that the enzyme YicC forms a hexameric channel that interacts with RNA, specifically cleaving a hairpin structure to produce shorter RNA fragments.

Article Abstract

Processing of RNA is a key regulatory mechanism for all living systems. We recently discovered a novel family of endoribonucleases that is conserved across all bacteria. Here, using crystallography, cryo-EM microscopy, biochemical, biophysical, and mass spectrometry techniques, we are able to shed light on a novel RNA cleavage mechanism in bacteria. We show that YicC, the prototypical member of this family, forms a hexameric channel that closes down on a 26-mer RNA substrate, and find that it cleaves across an RNA hairpin to generate several short fragments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793500PMC
http://dx.doi.org/10.21203/rs.3.rs-3788707/v1DOI Listing

Publication Analysis

Top Keywords

rna cleavage
8
novel family
8
rna
5
structural insights
4
insights rna
4
cleavage novel
4
family bacterial
4
bacterial rnases
4
rnases processing
4
processing rna
4

Similar Publications

Background & Aims: Infectious complications determine the prognosis of cirrhosis patients. Their infection susceptibility relates to the development of immuneparesis, a complex interplay of different immunosuppressive cells and soluble factors. Mechanisms underlying the dynamics of immuneparesis of innate immunity remain inconclusive.

View Article and Find Full Text PDF

A trigger-inducible split-Csy4 architecture for programmable RNA modulation.

Nucleic Acids Res

January 2025

Research Center for Life Sciences Computing, Zhejiang Lab, Kechuang Avenue, Yuhang District, Hangzhou, Zhejiang, 311121, China.

The CRISPR-derived endoribonuclease Csy4 is a popular tool for controlling transgene expression in various therapeutically relevant settings, but adverse effects potentially arising from non-specific RNA cleavage remains largely unexplored. Here, we report a split-Csy4 architecture that was carefully optimized for in vivo usage. First, we separated Csy4 into two independent protein moieties whose full catalytic activity can be restored via various constitutive or conditional protein dimerization systems.

View Article and Find Full Text PDF

Dual sgRNA-directed knockout gene expression using CRISPR/Cas9 technology for editing gene in triple-negative breast cancer.

Narra J

December 2024

Animal Research Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects.

View Article and Find Full Text PDF

Structural insights into RNA cleavage by PIWI Argonaute.

Nature

January 2025

Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.

Argonaute proteins are categorized into AGO and PIWI clades. Across most animal species, AGO-clade proteins are widely expressed in various cell types, and regulate normal gene expression. By contrast, PIWI-clade proteins predominantly function during gametogenesis to suppress transposons and ensure fertility.

View Article and Find Full Text PDF

Programmed-cell death is an antimicrobial defense mechanism that promotes clearance of intracellular pathogens. Toxoplasma counteracts host immune defenses by secreting effector proteins into host cells; however, how the parasite evades lytic cell death and the effectors involved remain poorly characterized. We identified ROP55, a rhoptry protein that promotes parasite survival by preventing lytic cell death in absence of IFN-γ stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!