Proper chromosome segregation is required to ensure genomic and chromosomal stability. The centromere is a unique chromatin domain present throughout the cell cycle on each chromosome defined by the CENP-A nucleosome. Centromeres (CEN) are responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating spindle attachment and mitotic checkpoint function. Upregulation of many genes that encode the CEN/KT proteins is commonly observed in cancer. Here, we show although that FOXM1 occupies the promoters of many CEN/KT genes with MYBL2, occupancy is insufficient alone to drive the FOXM1 correlated transcriptional program. We show that CENP-F, a component of the outer kinetochore, functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in alteration of chromatin accessibility at G2/M genes, including CENP-A, and leads to reduced FOXM1-MBB complex formation. The FOXM1-CENP-F transcriptional coordination is a cancer-specific function. We observed that a few CEN/KT genes escape FOXM1 regulation such as CENP-C which when upregulated with CENP-A, leads to increased chromosome misegregation and cell death. Together, we show that the FOXM1 and CENP-F coordinately regulate G2/M gene expression, and this coordination is specific to a subset of genes to allow for proliferation and maintenance of chromosome stability for cancer cell survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793414 | PMC |
http://dx.doi.org/10.1101/2023.12.27.573453 | DOI Listing |
Sci Adv
January 2025
Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
Voronezh State University, Voronezh, Russia.
Creation and long-term in vitro maintenance of valuable genotype collection is one of the modern approach to conservation of valuable gene pool of woody plants. However, during prolonged cultivation, genetic variability of cells and tissues may accumulate and lead to the loss of valuable characteristics of parental plants. It is therefore important to assess the genetic (including cytogenetic) stability of collection clones.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada.
Chromatin structure and DNA accessibility are partly modulated by the incorporation of histone variants. H2A.Z, encoded by the non-essential HTZ1 gene in S.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden.
Background: Noninvasive prenatal testing (NIPT) is increasingly used to screen for fetal chromosomal aneuploidy by analyzing cell-free DNA (cfDNA) in peripheral maternal blood. The method provides an opportunity for early detection of large genetic abnormalities without an increased risk of miscarriage due to invasive procedures. Commercial applications for use at clinical laboratories often take advantage of DNA sequencing technologies and include the bioinformatic workup of the sequence data.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
The aim of this work is to provide a comprehensive set of biological tests to assess the biomedical potential of novel osteochondral scaffolds with methods proposed to comply with the 3Rs principle, focusing here on a biphasic Curdlan-based osteochondral scaffold as a promising model biomaterial. experiments include the evaluation of cytotoxicity, mutagenicity, and genotoxicity referring to ISO standards, the assessment of the viability and proliferation of human chondrocytes and osteoblasts, and the estimation of inflammation after direct contact of biomaterials with human macrophages. experiments include assessments of the response of the surrounding osteochondral tissue after incubation with the implanted biomaterial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!