Tumors not only consist of cancerous cells, but they also harbor several normal-like cell types and non-cellular components. cancer-associated fibroblasts (CAFs) are one of these cellular components that are found predominantly in the tumor stroma. Autophagy is an intracellular degradation and quality control mechanism, and recent studies provided evidence that autophagy played a critical role in CAF formation, metabolic reprograming and tumor-stroma crosstalk. Therefore, shedding light on the autophagy and its role in CAF biology might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the exploitation of more efficient cancer diagnosis and treatment. Here, we provide an overview about the involvement of autophagy in CAF-related pathways, including transdifferentiation and activation of CAFs, and further discuss the implications of targeting tumor stroma as a treatment option.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791779PMC
http://dx.doi.org/10.3389/fcell.2023.1274682DOI Listing

Publication Analysis

Top Keywords

metabolic reprograming
8
tumor stroma
8
role caf
8
role autophagy
4
autophagy cancer-associated
4
cancer-associated fibroblast
4
fibroblast activation
4
activation signaling
4
signaling metabolic
4
reprograming tumors
4

Similar Publications

Lung cancer treatment is evolving, and the role of senescent macrophages in tumor immune evasion has become a key focus. This study explores how senescent macrophages interact with lung cancer cells, contributing to tumor progression and immune dysfunction. As aging impairs macrophage functions, including phagocytosis and metabolic signaling, it promotes chronic inflammation and cancer development.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy for solid tumors faces significant challenges, including inadequate infiltration, limited proliferation, diminished effector function of CAR T cells, and an immunosuppressive tumor microenvironment (TME). In this study, we utilized The Cancer Genome Atlas database to identify key chemokines (CCL4, CCL5, and CCR5) associated with T cell infiltration across various solid tumor types. The CCL4/CCL5-CCR5 axis emerged as significantly correlated with the presence of T cells within tumors, and enhancing the expression of CCR5 in CAR T cells bolstered their migratory capacity.

View Article and Find Full Text PDF

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF

Background: Tumor-derived small extracellular vesicles (sEVs) play an essential role in reprogramming the tumor microenvironment. Metabolic reprogramming is an essential prerequisite for M2 polarization of tumor-associated macrophages (TAMs). This M2 phenotype is closely related to the immune dysfunction of CD8 T cells and subsequent tumor progression.

View Article and Find Full Text PDF

Background: Specialized pro-resolving mediators (SPMs) promote inflammatory resolution and homeostasis and are thought to have specific reprogramming effects on hman microglia. Decreased SPM levels have been correlated with chronic neuroinflammation, late-stage Alzheimer's disease (AD) and neuropathology in humans, yet few studies have explored the cellular signatures of resolution. Amyloid is though to bind one target resolution receptor, ChemR23, leading to internalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!