Actions in the real world have immediate sensory consequences. Mimicking these in digital environments is within reach, but technical constraints usually impose a certain latency (delay) between user actions and system responses. It is important to assess the impact of this latency on the users, ideally with measurement techniques that do not interfere with their digital experience. One such unobtrusive technique is electroencephalography (EEG), which can capture the users' brain activity associated with motor responses and sensory events by extracting event-related potentials (ERPs) from the continuous EEG recording. Here we exploit the fact that the amplitude of sensory ERP components (specifically, N1 and P2) reflects the degree to which the sensory event was perceived as an expected consequence of an own action (self-generation effect). Participants ( = 24) elicit auditory events in a virtual-reality (VR) setting by entering codes on virtual keypads to open doors. In a within-participant design, the delay between user input and sound presentation is manipulated across blocks. Occasionally, the virtual keypad is operated by a simulated robot instead, yielding a control condition with externally generated sounds. Results show that N1 (but not P2) amplitude is reduced for self-generated relative to externally generated sounds, and P2 (but not N1) amplitude is modulated by delay of sound presentation in a graded manner. This dissociation between N1 and P2 effects maps back to basic research on self-generation of sounds. We suggest P2 amplitude as a candidate read-out to assess the quality and immersiveness of digital environments with respect to system latency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790907 | PMC |
http://dx.doi.org/10.3389/fnrgo.2023.1196507 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!