α-Aryl substituted GdDOTA derivatives, the perfect contrast agents for MRI?

Chem Commun (Camb)

Department of Chemistry, Portland State University, 1719 SW 10th Ave, Portland, OR, 97201, USA.

Published: March 2024

Enhancing the performance of Gd chelates as relaxation agents for MRI has the potential to lower doses, improving safety and mitigating the environmental impact on our surface waters. More than three decades of research into manipulating the properties of Gd have failed to develop a chelate that simultaneously optimizes all relevant parameters and affords maximal relaxivity. Introducing aryl substituents into the α-position of the pendant arms of a GdDOTA chelate affords chelates that, for the first time, simultaneously optimize all physico-chemical properties. Slowing tumbling by binding to human serum albumin affords a relaxivity of 110 ± 5 mM s, close to the maximum possible. As discrete chelates, these α-aryl substituted GdDOTA chelates exhibit relaxivities that are 2-3 times higher than those of currently used agents, even at the higher fields (1.5 & 3.0 T) used in modern clinical MRI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919327PMC
http://dx.doi.org/10.1039/d3cc05989hDOI Listing

Publication Analysis

Top Keywords

α-aryl substituted
8
substituted gddota
8
gddota derivatives
4
derivatives perfect
4
perfect contrast
4
contrast agents
4
agents mri?
4
mri? enhancing
4
enhancing performance
4
chelates
4

Similar Publications

Downscaling of Non-Van der Waals Semimetallic WN with Resistivity Preservation.

ACS Nano

January 2025

Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States.

The bulk phase of transition metal nitrides (TMNs) has long been a subject of extensive investigation due to their utility as coating materials, electrocatalysts, and diffusion barriers, attributed to their high conductivity and refractory properties. Downscaling TMNs into two-dimensional (2D) forms would provide valuable members to the existing 2D materials repertoire, with potential enhancements across various applications. Moreover, calculations have anticipated the emergence of uncommon physical phenomena in TMNs at the 2D limit.

View Article and Find Full Text PDF

Objectives: To describe operative results after humerus nonunion surgery in patients whose initial humerus shaft fracture (OTA/AO code 12) was treated nonoperatively and to identify risk factors of nonunion surgery failure in the same population.

Design: Case series.

Setting: Nine academic level 1 trauma centers.

View Article and Find Full Text PDF

Following a request from the European Commission, the EFSA was asked to deliver a scientific opinion on the proposed modification of the terms of the authorisation of the feed additive consisting of a preparation of canthaxanthin (CAROPHYLL® Red 10%), regarding the addition of a new production route, by the yeast CBS 146148 and to modify the additive specifications by substituting ethoxyquin by 4.4% butylated hydroxytoluene (BHT) and increasing the limit for dichloromethane to 80 mg/kg. The additive is already authorised as zootechnical feed additive for breeder hens.

View Article and Find Full Text PDF

This study presents a novel series of -acylated 1,2,4-triazol-5-amines and 1-pyrazol-5-amines, featuring a pyrazin-2-yl moiety, developed as covalent inhibitors of thrombin. These compounds demonstrated potent inhibitory activity, with derivatives and achieving IC values as low as 0.7 and 0.

View Article and Find Full Text PDF

Background: Aneurysmal bone cysts (ABCs) are benign, blood-filled neoplasms causing bone destruction, often requiring resection. However, challenges arise, especially at the cranio-cervical junction, where proximity to critical structures limits removal. Non-surgical options include selective arterial embolization (SAE) as main treatment, while Denosumab and centrifugated bone marrow emerge as experimental alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!