Background: We aimed to predict human epidermal growth factor receptor 2 (HER2) 2+ status in patients with breast cancer by constructing and validating machine learning models utilizing ultrasound (US) radiomics and clinical features.

Methods: We analyzed 203 breast cancer cases immunohistochemically determined as HER2 2+ and used fluorescence in situ hybridization (FISH) as the confirmation method. From each case, the study analyzed 840 extracted radiomics features and 11 clinicopathologic features. Cases were randomly split into training (n = 141) and validation sets (n = 62) at a 7:3 ratio. Univariate logistic regression analysis was first performed on the 11 clinicopathologic characteristics. The least absolute shrinkage and selection operator (LASSO) and decision tree (DT) techniques were employed for post-feature selection. Finally, 19 radiomics features were utilized in logistic regression (LR) and Naive Bayesian (NB) classifiers. Model performance was gauged using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity.

Results: Our models exhibited notable diagnostic efficacy in differentiating HER2-positive from negative breast cancer cases. In the validation sets, the LR model outperformed the NB model with an AUC of 0.860 and accuracy of 83.8% compared to NB's AUC of 0.684 and accuracy of 79.0%. The LR model demonstrated higher sensitivity (92.3% vs. 46.2%) while the NB model had a better specificity (91.8% vs. 63.3%) in the validation set.

Conclusions: Machine learning models grounded on radiomics efficiently predicted IHC HER2 2+ status in breast cancer patients, suggesting potential enhancements in clinical decision-making for treatment and management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905683PMC
http://dx.doi.org/10.1002/cam4.6946DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
her2 status
12
ultrasound radiomics
8
radiomics clinical
8
status breast
8
cancer patients
8
machine learning
8
learning models
8
cancer cases
8
radiomics features
8

Similar Publications

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Purpose: Age stratification influences the clinicopathological features and survival outcomes of breast cancer. We aimed to understand the effect of age on gene variants in young Chinese women with breast cancer compared with those from The Cancer Genome Atlas (TCGA).

Methods: Enrolled patients ≤ 40 years old (N = 370) underwent germline or somatic genetic testing using a 32-gene hereditary cancer panel at Fujian Union Hospital.

View Article and Find Full Text PDF

Purpose: There is an increasing incidence of young breast cancer (YBC) patients with uncertainty surrounding the factors and patterns that are contributing.

Methods: We obtained characteristics and survival data from 206,156 YBC patients (≤ 40 years of age) diagnosed between 2005 and 2019 from the National Cancer Database (NCDB). Patients were subdivided into two comparison groups based on year of diagnosis (2005-2009, Old vs.

View Article and Find Full Text PDF

Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).

View Article and Find Full Text PDF

Background: Bilateral risk-reducing mastectomies (RRMs) have been proven to decrease the risk of breast cancer in patients at high risk owing to family history or having pathogenic genetic mutations. However, few resources with consolidated data have detailed the patient experience following surgery. This systematic review features patient-reported outcomes for patients with no breast cancer history in the year after their bilateral RRM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!