AI Article Synopsis

  • Pancreatic cancer is a leading cause of cancer-related deaths, prompting the need for improved early detection methods.
  • The SiMoT technology, capable of analyzing single molecules, is proposed as a superior diagnostic tool compared to the existing SIMOA system for identifying pancreatic cancer precursor cysts.
  • SiMoT effectively differentiates between various types of pancreatic cysts using advanced data analysis techniques, highlighting its potential for enhancing diagnostics and enabling field-deployable liquid biopsy applications.

Article Abstract

Pancreatic cancer, ranking as the third factor in cancer-related deaths, necessitates enhanced diagnostic measures through early detection. In response, SiMoT-Single-molecule with a large Transistor multiplexing array, achieving a Technology Readiness Level of 5, is proposed for a timely identification of pancreatic cancer precursor cysts and is benchmarked against the commercially available chemiluminescent immunoassay SIMOA (Single molecule array) SP-X System. A cohort of 39 samples, comprising 33 cyst fluids and 6 blood plasma specimens, undergoes detailed examination with both technologies. The SiMoT array targets oncoproteins MUC1 and CD55, and oncogene KRAS, while the SIMOA SP-X planar technology exclusively focuses on MUC1 and CD55. Employing Principal Component Analysis (PCA) for multivariate data processing, the SiMoT array demonstrates effective discrimination of malignant/pre-invasive high-grade or potentially malignant low-grade pancreatic cysts from benign non-mucinous cysts. Conversely, PCA analysis applied to SIMOA assay reveals less effective differentiation ability among the three cyst classes. Notably, SiMoT unique capability of concurrently analyzing protein and genetic markers with the threshold of one single molecule in 0.1 mL positions it as a comprehensive and reliable diagnostic tool. The electronic response generated by the SiMoT array facilitates direct digital data communication, suggesting potential applications in the development of field-deployable liquid biopsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251558PMC
http://dx.doi.org/10.1002/advs.202308141DOI Listing

Publication Analysis

Top Keywords

simot array
16
chemiluminescent immunoassay
8
pancreatic cancer
8
single molecule
8
muc1 cd55
8
array
6
simot
5
analysis clinical
4
clinical samples
4
pancreatic
4

Similar Publications

The development of ultrasensitive electronic sensors for in vitro diagnostics is essential for the reliable monitoring of asymptomatic individuals before illness proliferation or progression. These platforms are increasingly valued for their potential to enable timely diagnosis and swift prognosis of infectious or progressive diseases. Typically, the responses from these analytical tools are recorded as digital signals, with electronic data offering simpler processing compared to spectral and optical data.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic cancer is a leading cause of cancer-related deaths, prompting the need for improved early detection methods.
  • The SiMoT technology, capable of analyzing single molecules, is proposed as a superior diagnostic tool compared to the existing SIMOA system for identifying pancreatic cancer precursor cysts.
  • SiMoT effectively differentiates between various types of pancreatic cysts using advanced data analysis techniques, highlighting its potential for enhancing diagnostics and enabling field-deployable liquid biopsy applications.
View Article and Find Full Text PDF

Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices.

View Article and Find Full Text PDF

A cohort of 47 patients is screened for pancreatic cancer precursors with a portable 96-well bioelectronic sensing-array for single-molecule assay in cysts fluid and blood plasma, deployable at point-of-care (POC). Pancreatic cancer precursors are mucinous cysts diagnosed with a sensitivity of at most 80% by state-of-the-art cytopathological molecular analyses (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!