Combined transcriptome and metabolome analysis reveals breed-specific regulatory mechanisms in Dorper and Tan sheep.

BMC Genomics

Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China.

Published: January 2024

AI Article Synopsis

Article Abstract

Background: Dorper and Tan sheep are renowned for their rapid growth and exceptional meat quality, respectively. Previous research has provided evidence of the impact of gut microbiota on breed characteristics. The precise correlation between the gastrointestinal tract and peripheral organs in each breed is still unclear. Investigating the metabolic network of the intestinal organ has the potential to improve animal growth performance and enhance economic benefits through the regulation of intestinal metabolites.

Results: In this study, we identified the growth advantage of Dorper sheep and the high fat content of Tan sheep. A transcriptome study of the brain, liver, skeletal muscle, and intestinal tissues of both breeds revealed 3,750 differentially expressed genes (DEGs). The genes PPARGC1A, LPL, and PHGDH were found to be highly expressed in Doper, resulting in the up-regulation of pathways related to lipid oxidation, glycerophospholipid metabolism, and amino acid anabolism. Tan sheep highly express the BSEP, LDLR, and ACHE genes, which up-regulate the pathways involved in bile transport and cholesterol homeostasis. Hindgut content analysis identified 200 differentially accumulated metabolites (DAMs). Purines, pyrimidines, bile acids, and fatty acid substances were more abundant in Dorper sheep. Based on combined gene and metabolite analyses, we have identified glycine, serine, and threonine metabolism, tryptophan metabolism, bile secretion, cholesterol metabolism, and neuroactive ligand-receptor interaction as key factors contributing to the differences among the breeds.

Conclusions: This study indicates that different breeds of sheep exhibit unique breed characteristics through various physiological regulatory methods. Dorper sheep upregulate metabolic signals related to glycine, serine, and threonine, resulting in an increase in purine and pyrimidine substances. This, in turn, promotes the synthesis of amino acids and facilitates body development, resulting in a faster rate of weight gain. Tan sheep accelerate bile transport, reduce bile accumulation in the intestine, and upregulate cholesterol homeostasis signals in skeletal muscles. This promotes the accumulation of peripheral and intramuscular fat, resulting in improved meat quality. This work adopts a joint analysis method of multi-tissue transcriptome and gut metabolome, providing a successful case for analyzing the mechanisms underlying the formation of various traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795462PMC
http://dx.doi.org/10.1186/s12864-023-09870-9DOI Listing

Publication Analysis

Top Keywords

tan sheep
20
dorper sheep
12
sheep
9
dorper tan
8
meat quality
8
breed characteristics
8
bile transport
8
cholesterol homeostasis
8
glycine serine
8
serine threonine
8

Similar Publications

Integrated electronic nose and multi-omics reveal changes in flavour characterization of cashmere goats and tan sheep meat.

Food Chem X

January 2025

Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.

This study aimed to employ a multi-omics method to identify key compounds contributing to the sensory flavour of mutton and to investigate the internal correlation between volatile metabolites and lipids in Cashmere goats and Tan sheep. The results demonstrate that the electronic nose can effectively and quickly distinguish goats and sheep meat. A total of 18 volatile metabolites and 314 lipids were identified as significant contributors to the flavour difference between goats and sheep meat, as determined by HS-SPME-GC-MS and lipidomic respectively.

View Article and Find Full Text PDF

Telomere-to-telomere sheep genome assembly identifies variants associated with wool fineness.

Nat Genet

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China.

Ongoing efforts to improve sheep reference genome assemblies still leave many gaps and incomplete regions, resulting in a few common failures and errors in genomic studies. Here, we report a 2.85-Gb gap-free telomere-to-telomere genome of a ram (T2T-sheep1.

View Article and Find Full Text PDF

The increasing occurrence of extended-spectrum β-lactamase (ESBL)-producing , most commonly , has become a serious problem. The aim of this study was to determine the presence of ESBL-producing Gram-negative bacteria in dairy cattle, goat and sheep farms located in southern Türkiye. Samples (409 quarter milk samples and 110 fresh faecal samples from cattle, 75 bulk tank milk samples and 225 rectal swab samples from goats and sheep) were subjected to selective isolation on MacConkey agar with ceftazidime (2 µg/mL).

View Article and Find Full Text PDF

Inferring transcriptomic dynamics implicated in odor fatty acid accumulation in adipose tissue of Hulun Buir sheep from birth to market.

BMC Genomics

December 2024

CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.

This study aimed to investigate the temporal accumulation of odor fatty acids (OFAs) in the dorsal subcutaneous adipose tissue, and uncover their dynamic regulatory metabolic pathways from the transcriptomic perspective in lambs from birth to market. Thirty-two Hulun Buir lambs were selected and randomly assigned to four different sampling stages following their growth trajectories: neonatal (day 1), weaning (day 75), mid-fattening (day 150), and late-fattening (day 180) stages. Results indicated that the contents of three OFAs increased progressively as lambs matured, with the most drastic change occurred at mid-fattening vs.

View Article and Find Full Text PDF
Article Synopsis
  • The Chinese Tan sheep breed, primarily raised in northwestern China, is valued for its lambskin and shiny white curly wool, with a focus on traits like wool length, birth weight, and head coat color in a study of 256 individuals.
  • Whole genome sequencing yielded over 23 million high-quality SNPs, leading to the identification of 208 significant SNPs related to wool length, 1056 linked to birth weight (mostly on chromosome 2), and 1424 for head coat color (predominantly on chromosome 14).
  • Further testing of head coat color-related SNPs confirmed five mutation sites on chromosome 14 and suggested that heterozygous genotypes may be responsible for the black-headed coat color in
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!