A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of rainfall pattern and infiltration capacity on the spatial and temporal inundation characteristics of urban waterlogging. | LitMetric

Influence of rainfall pattern and infiltration capacity on the spatial and temporal inundation characteristics of urban waterlogging.

Environ Sci Pollut Res Int

State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.

Published: February 2024

The rapid development of the city leads to the continuous updating of the land use allocation ratio, particularly during the flood season, which will exacerbate the significant changes in the spatial and temporal patterns of urban flooding, increasing the difficulty of urban flood forecasting and early warning. In this study, the spatial and temporal evolution of flooding in a high-density urban area was analyzed based on the Mike Flood model, and the influence mechanisms of different rainfall peak locations and infiltration rate scenarios on the spatial and temporal characteristics of urban waterlogging were explored. The results revealed that under the same return period, the larger the rainfall peak coefficient, the larger the peak value of inundation volume and inundation area. When the rainfall peak coefficient is small, the higher the return period is, and the larger the peak lag time of the inundation volume is, in which P = 50a, r = 0.2, the peak lag time of the inundation volume reached 32 min and 45 min for the inundation depths H > 0.03 m and H > 0.15 m, respectively. There are also significant differences in the peak lag time of waterlogging inundation volume for different inundation depths. The greater the inundation depth, the longer the peak lag time of the inundation volume, and the higher the return period, the more significant the effect of lag time prolongation. It is worth noting that the increase in infiltration rate may lead to an advance in the peak time of inundation volume and inundation area, and the peak time of the inundation area is overall more obvious than that of inundation volume. The effect of infiltration rate on the peak time of inundation volume for larger inundation depths was relatively large; the peak times of inundation volume and inundation area were advanced by 4-6 min and 4-8 min for H > 0.03 m and H > 0.15 m, respectively, after the increase in infiltration rate, and the higher the rainfall return period, the longer the advance time. The spatial and temporal characteristics of waterlogging under different peak rainfall locations and infiltration capacities obtained in this study can help provide a new perspective for temporal forecasting and warning of urban waterlogging.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-32012-xDOI Listing

Publication Analysis

Top Keywords

inundation volume
36
time inundation
24
spatial temporal
20
lag time
20
inundation
18
infiltration rate
16
return period
16
volume inundation
16
inundation area
16
peak lag
16

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!