Guillain-Barré syndrome (GBS) is a rare heterogenous disorder of the peripheral nervous system, which is usually triggered by a preceding infection, and causes a potentially life-threatening progressive muscle weakness. Although GBS is considered an autoimmune disease, the mechanisms that underlie its distinct clinical subtypes remain largely unknown. Here, by combining in vitro T cell screening, single-cell RNA sequencing and T cell receptor (TCR) sequencing, we identify autoreactive memory CD4 cells, that show a cytotoxic T helper 1 (T1)-like phenotype, and rare CD8 T cells that target myelin antigens of the peripheral nerves in patients with the demyelinating disease variant. We characterized more than 1,000 autoreactive single T cell clones, which revealed a polyclonal TCR repertoire, short CDR3β lengths, preferential HLA-DR restrictions and recognition of immunodominant epitopes. We found that autoreactive TCRβ clonotypes were expanded in the blood of the same patient at distinct disease stages and, notably, that they were shared in the blood and the cerebrospinal fluid across different patients with GBS, but not in control individuals. Finally, we identified myelin-reactive T cells in the nerve biopsy from one patient, which indicates that these cells contribute directly to disease pathophysiology. Collectively, our data provide clear evidence of autoreactive T cell immunity in a subset of patients with GBS, and open new perspectives in the field of inflammatory peripheral neuropathies, with potential impact for biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830418PMC
http://dx.doi.org/10.1038/s41586-023-06916-6DOI Listing

Publication Analysis

Top Keywords

cells target
8
peripheral nerves
8
guillain-barré syndrome
8
patients gbs
8
autoreactive
5
autoreactive cells
4
target peripheral
4
nerves guillain-barré
4
syndrome guillain-barré
4
gbs
4

Similar Publications

The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.

View Article and Find Full Text PDF

A conformational switch-controlled RNA sensor based on orthogonal dCas12a for RNA imaging in live cells.

Biosens Bioelectron

January 2025

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:

RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.

View Article and Find Full Text PDF

Cell-Based Therapies in GI Cancers: Current Landscape and Future Directions.

Am Soc Clin Oncol Educ Book

January 2025

Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.

Cell-based therapies have become integral to the routine clinical management of hematologic malignancies. Tumor-infiltrating lymphocyte (TIL) therapy has demonstrated efficacy in immunogenic solid tumors, such as melanoma. However, in the GI field, evidence supporting the clinical success of cell-based therapies is still awaited.

View Article and Find Full Text PDF

A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2 normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!