Owing to recent development in the thermal sciences, scientists are focusing towards the wide applications of nanofluids in industrial systems, engineering processes, medical sciences, enhancing the transport sources, energy production etc. In various available studies on nanomaterials, the thermal significance of nanoparticles has been presented in view of constant thermal conductivity and fluid viscosity. However, exponents verify that in many industrial and engineering process, the fluid viscosity and thermal conductivity cannot be treated as a constant. The motivation of current research is to investigates the improved thermal aspects of magnetized Maxwell nanofluid attaining the variable viscosity and thermal conductivity. The nanofluid referred to the suspension of microorganisms to ensure the stability. The insight of heat transfer is predicted under the assumptions of radiated phenomenon. Additionally, the variable thermal conductivity assumptions are encountered to examine the transport phenomenon. Whole investigation is supported with key contribution of convective-Nield boundary conditions. In order to evaluating the numerical computations of problem, a famous shooting technique is utilized. After ensuring the validity of solution, physical assessment of problem is focused. It is claimed that velocity profile boosted due to variable viscosity parameter. A reduction in temperature profile is noted due to thermal relaxation constant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794700 | PMC |
http://dx.doi.org/10.1038/s41598-023-51113-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!