Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Testosterone is safe and highly effective in men with organic hypogonadism, but worldwide testosterone prescribing has recently shifted towards middle-aged and older men, mostly with low testosterone related to age, diabetes and obesity, for whom there is less established evidence of clinical safety and benefit. The value of testosterone treatment in middle-aged and older men with low testosterone is yet to be determined. We therefore evaluated the cost-effectiveness of testosterone treatment in such men with low testosterone compared with no treatment.
Methods: A cost-utility analysis comparing testosterone with no treatment was conducted following best practices in decision modelling. A cohort Markov model incorporating relevant care pathways for individuals with hypogonadism was developed for a 10-year-time horizon. Clinical outcomes were obtained from an individual patient meta-analysis of placebo-controlled, double-blind randomised studies. Three starting age categories were defined: 40, 60 and 75 years. Cost utility (quality-adjusted life years) accrued and costs of testosterone treatment, monitoring and cardiovascular complications were compared to estimate incremental cost-effectiveness ratios and cost-effectiveness acceptability curves for selected scenarios.
Results: Ten-year excess treatment costs for testosterone compared with non-treatment ranged between £2306 and £3269 per patient. Quality-adjusted life years results depended on the instruments used to measure health utilities. Using Beck depression index-derived quality-adjusted life years data, testosterone was cost-effective (incremental cost-effectiveness ratio <£20,000) for men aged <75 years, regardless of morbidity and mortality sensitivity analyses. Testosterone was not cost-effective in men aged >75 years in models assuming increased morbidity and/or mortality.
Conclusions And Future Research: Our data suggest that testosterone is cost-effective in men <75 years when Beck depression index-derived quality-adjusted life years data are considered; cost-effectiveness in men >75 years is dependent on cardiovascular safety. However, more robust and longer-term cost-utility data are needed to verify our conclusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/andr.13597 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!