High-capacity silicon (Si) materials hold a position at the forefront of advanced lithium-ion batteries. The inherent potential offers considerable advantages for substantially increasing the energy density in batteries, capable of maximizing the benefit by changing the paradigm from nano- to micron-sized Si particles. Nevertheless, intrinsic structural instability remains a significant barrier to its practical application, especially for larger Si particles. Here, a covalently interconnected system is reported employing Si microparticles (5 µm) and a highly elastic gel polymer electrolyte (GPE) through electron beam irradiation. The integrated system mitigates the substantial volumetric expansion of pure Si, enhancing overall stability, while accelerating charge carrier kinetics due to the high ionic conductivity. Through the cost-effective but practical approach of electron beam technology, the resulting 500 mAh-pouch cell showed exceptional stability and high gravimetric/volumetric energy densities of 413 Wh kg, 1022 Wh L, highlighting the feasibility even in current battery production lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966573PMC
http://dx.doi.org/10.1002/advs.202305298DOI Listing

Publication Analysis

Top Keywords

electron beam
8
formulating electron
4
electron beam-induced
4
beam-induced covalent
4
covalent linkages
4
linkages stable
4
stable high-energy-density
4
high-energy-density silicon
4
silicon microparticle
4
microparticle anode
4

Similar Publications

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

Nanomaterial properties such as size, structure, and composition can be controlled by manipulating radiation, such as gamma rays, X-rays, and electron beams. This control allows scientists to create materials with desired properties that can be used in a wide range of applications, from electronics to medicine. This use of radiation for nanotechnology is revolutionizing the way we design and manufacture materials.

View Article and Find Full Text PDF

With the development of 3D bioprinting and the creation of innovative biocompatible materials, several new approaches have brought advantages to patients and surgical teams. Increasingly more bone defects are now treated using 3D-bioprinted prostheses and implementing new solutions relies on the ability of engineers and medical teams to identify methods of anchoring 3D-printed prostheses and to reveal the potential influence of bioactive materials on surrounding tissues. In this paper, we described why limb salvage surgery based on 3D bioprinting is a reliable and effective alternative to amputations, and why this approach is considered the new standard in modern medicine.

View Article and Find Full Text PDF

Polymerizable ionic liquid-based gel polymer electrolytes (PIL-GPEs) were developed for the first time using high-energy electron beam irradiation for high-performance lithium-ion batteries (LIBs). By incorporating an imidazolium-based ionic liquid (PIL) into the polymer network, PIL-GPEs achieved high ionic conductivity (1.90 mS cm at 25 °C), a lithium transference number of 0.

View Article and Find Full Text PDF

Mandibular bone defect healing using polylactic acid-nano-hydroxyapatite-gelatin scaffold loaded with hesperidin and dental pulp stem cells in rat.

Tissue Cell

December 2024

Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan. Electronic address:

Addressing mandibular defects poses a significant challenge in maxillofacial surgery. Recent advancements have led to the development of various biomimetic composite scaffolds aimed at facilitating mandibular defect reconstruction. This study aimed to assess the regenerative potential of a novel composite scaffold consisting of polylactic acid (PLA), hydroxyapatite nanoparticles (n-HA), gelatin, hesperidin, and human dental pulp stem cells (DPSCs) in a rat model of mandibular bone defect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!