Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Traditional survey-based surveillance is costly, limited in its ability to distinguish diabetes types and time-consuming, resulting in reporting delays. The Diabetes in Children, Adolescents and Young Adults (DiCAYA) Network seeks to advance diabetes surveillance efforts in youth and young adults through the use of large-volume electronic health record (EHR) data. The network has two primary aims, namely: (1) to refine and validate EHR-based computable phenotype algorithms for accurate identification of type 1 and type 2 diabetes among youth and young adults and (2) to estimate the incidence and prevalence of type 1 and type 2 diabetes among youth and young adults and trends therein. The network aims to augment diabetes surveillance capacity in the USA and assess performance of EHR-based surveillance. This paper describes the DiCAYA Network and how these aims will be achieved.
Methods And Analysis: The DiCAYA Network is spread across eight geographically diverse US-based centres and a coordinating centre. Three centres conduct diabetes surveillance in youth aged 0-17 years only (component A), three centres conduct surveillance in young adults aged 18-44 years only (component B) and two centres conduct surveillance in components A and B. The network will assess the validity of computable phenotype definitions to determine diabetes status and type based on sensitivity, specificity, positive predictive value and negative predictive value of the phenotypes against the gold standard of manually abstracted medical charts. Prevalence and incidence rates will be presented as unadjusted estimates and as race/ethnicity, sex and age-adjusted estimates using Poisson regression.
Ethics And Dissemination: The DiCAYA Network is well positioned to advance diabetes surveillance methods. The network will disseminate EHR-based surveillance methodology that can be broadly adopted and will report diabetes prevalence and incidence for key demographic subgroups of youth and young adults in a large set of regions across the USA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10806714 | PMC |
http://dx.doi.org/10.1136/bmjopen-2023-073791 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!