A novel curdlan/methyl cellulose/walnut green husk polyphenol edible composite film for walnut packaging.

Int J Biol Macromol

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China. Electronic address:

Published: March 2024

In this study, polyphenols were extracted from walnut green husk, an agricultural waste, and were incorporated into curdlan (CD) and methyl cellulose (MC) to create a novel edible composite film. For structural character, the film matrix was tightly bound primarily by non-covalent bonds and the addition of walnut green husk polyphenols (WGHP) significantly reduced the surface roughness of the composite film. For mechanical properties, the addition of WGHP improve the flexibility of films, and it significantly improved the barrier ability of ultraviolet rays and water-vapor. Furthermore, the incorporation of WGHP to the CD-MC film resulted in enhanced antioxidant and antibacterial effects, which effectively retards lipid oxidation in fried walnuts. Consequently, the fabricated CD-MC-WGHP composite film bears immense potential for use in food preservation applications, particularly in extending the shelf life of fried walnuts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.129505DOI Listing

Publication Analysis

Top Keywords

composite film
16
green husk
12
edible composite
8
walnut green
8
fried walnuts
8
film
6
novel curdlan/methyl
4
curdlan/methyl cellulose/walnut
4
cellulose/walnut green
4
husk polyphenol
4

Similar Publications

Desired Color Diversity of Carbon Fiber with Excellent Environmental Super-Durability and Remarkable Flame Retardancy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.

Carbon fiber (CF) has been widely used in aerospace, military, infrastructure, sports, and leisure fields owing to its excellent mechanical properties, superior corrosion and friction resistances, excellent thermal stability, and lightweight. However, the ultrablack appearance derived from the extremely strong absorption of light throughout the entire visible region makes it difficult to satisfy the aesthetic and pleasurable demands of the colorful world and limits their applications in a broader field. Herein, inspired by the , a double-layer ultrathin AlO/TiO composite structure was fabricated on CFs by the atomic layer deposition method.

View Article and Find Full Text PDF

High-Performance Hydrogen Sensing at Room Temperature via Nb-Doped Titanium Oxide Thin Films Fabricated by Micro-Arc Oxidation.

Nanomaterials (Basel)

January 2025

Guangdong Key Laboratory of Materials and Equipment in Harsh Marine Environment, School of Ocean Engineering, Guangzhou Maritime University, Guangzhou 510725, China.

Metal oxide semiconductor (MOS) hydrogen sensors offer advantages, such as high sensitivity and fast response, but their challenges remain in achieving low-cost fabrication and stable operation at room temperature. This study investigates Nb-doped TiO (NTO) thin films prepared via a one-step micro-arc oxidation (MAO) with the addition of NbO nanoparticles into the electrolyte for room-temperature hydrogen sensing. The characterization results revealed that the incorporation of NbO altered the film's morphology and phase composition, increasing the Nb content and forming a homogeneous composite thin film.

View Article and Find Full Text PDF

This study explored the batch membrane filtration of 40% ethanol extracts from spent lavender, containing valuable compounds like rosmarinic acid, caffeic acid, and luteolin, using a polyamide-urea thin film composite X201 membrane. Conducted at room temperature and 20 bar transmembrane pressure, the process demonstrated high efficiency, with rejection rates exceeding 98% for global antioxidant activity and 93-100% for absolute concentrations of the target components. During concentration, the permeate flux declined from 2.

View Article and Find Full Text PDF

A Review of Sulfate Removal from Water Using Polymeric Membranes.

Membranes (Basel)

January 2025

Industrial Systems Engineering, Produced Water Treatment Laboratory, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada.

Access to clean and reliable water has become a critical concern due to the global water crisis. High sulfate levels in drinking water raise health concerns for humans and animals and can cause serious corrosion in industrial systems. Sulfated waters represent a major challenge on the Canadian prairies, leading to many cattle deaths.

View Article and Find Full Text PDF

This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!