Excessive use of fertilizers presents a significant threat to groundwater safety. To mitigate nitrate leaching and ensure the sustainable utilization of groundwater resources, it is crucial to quantify the spatial heterogeneity of nitrogen leaching and its drivers. Therefore, accurate modeling of deep nitrate leaching at large regional scales is necessary. In this study, we have created a computational framework to analyze the transport of unsaturated zone water and nitrate at a regional scale. The framework is based on a process-oriented, watershed-scale computational model that segments the study area into a grid system, with each grid modeled using Richards-based advection-diffusion equations for water and solutes. The research model estimated nitrate nitrogen leaching, accumulation, and denitrification in the vadose zone of agricultural fields in the Baiyangdian watershed, which is a typical agricultural region with complex land use and soil deposition conditions in the North China Plain. The results showed that there were significant spatial differences in nitrate N leaching, denitrification and accumulation with values of 0-388 kg/ha/year, 30-177 kg/ha/year and 75-4778 kg/ha. Groundwater recharge in the wheat/maize, vegetable, and cotton area exhibited a negative correlation with nitrate N accumulation while showing a positive correlation with nitrate N leaching. Nitrate nitrogen distribution indicated spatial heterogeneity, attributable mainly to the heterogeneity in soil texture, structure, and land use. With nitrate nitrogen leaching and denitrification levels reaching 327-388 kg/ha/year and 133-175 kg/ha/year, respectively, vegetable fields pose a direct threat to groundwater. Meanwhile, wheat/maize fields showed the greatest nitrate nitrogen accumulation, ranging from 624 to 4778 kg/ha. This excessive buildup of nitrate in these fields presents a potential hazard to groundwater quality. Soil texture in the root zone had a greater influence on the amount of nitrate leaching and denitrification than soil texture below the root zone. Deeper soil texture (>2 m) was found to mainly control total nitrate accumulation in the vadose zone. To assess nitrate leaching, denitrification, and accumulation at a regional scale within the deep vadose zone, a process-oriented model was developed, considering the intricate associations among land usage, soil texture, and biochemical reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.170114 | DOI Listing |
Environ Sci Process Impacts
January 2025
Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (, hypoxia, eutrophication) and public health (, nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
Ionic liquid (IL) units in heterogeneous catalysts exhibit synergistic effects to enhance catalytic performance and stabilize catalytically active centers, while also preventing the degradation of catalysts during the reaction process. Ionic liquid units in IL-functionalized CMOF catalysts enhance their catalytic performance in a synergistic manner. However, not only are the yields of IL-functionalized CMOFs obtained with post-synthesis methods low, but they also lead to blocking of the MOF pores and leaching of the ionic liquid.
View Article and Find Full Text PDFJ Contam Hydrol
December 2024
Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
Frequent exchange of surface water and groundwater in karst agricultural areas results in soil nutrient loss during rainfall and consequent deterioration of the aquatic environment. To understand nitrogen (N) transformation and leaching processes from karst soil during rainfall events, two typical N fertilizers were added to karst soil and consequently investigated the nitrogenous species using soil column experiments system. The contents of various N forms in the soil and leachate were analyzed, and the net nitrification and the N leaching rates were calculated.
View Article and Find Full Text PDFSci Rep
December 2024
Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box: 11365-8486, Tehran, Iran.
This study describes the use of the emulsion liquid membrane (ELM) technique to recover thorium (Th(IV)) from an aqueous nitrate solution. The components of the ELM were kerosene as a diluent, sorbitan monooleate (span 80) as a surfactant, bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) as an extractant, and HSO solution as a stripping reagent. Th(IV) was more successfully extracted and separated under the following favorable conditions: Cyanex272 concentration of 0.
View Article and Find Full Text PDFJ Environ Qual
December 2024
USDA-ARS National Laboratory for Agriculture and the Environment, Ames, Iowa, USA.
Nutrient losses via subsurface tile cause environmental degradation of aquatic ecosystems. Various management practices are primarily aimed at reduction of nitrate leaching in tile discharge; however, studies on leaching of other nutrients are limited. A replicated plot experiment was initiated in 2016 as part of the Long-Term Agroecosystem Research (LTAR) network Croplands Common Experiment to quantify the effectiveness of management practices on leaching of NO-N, total P, K, and S from drained soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!