Generation of a patient-specific iPSC cell line with cardiac arrhythmias and dilated cardiomyopathy (CBRCULi016-A), an isogenic control (CBRCULi016-A-1), and a paternal control (CBRCULi017-A).

Stem Cell Res

CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada. Electronic address:

Published: March 2024

Dilated cardiomyopathy (DCM) is a prevalent cause of heart failure. We generated induced pluripotent stem cell (iPSC) lines from a DCM patient carrying a mutation in the SCN5A gene, with his healthy father serving as a control. Notably, we employed CRISPR-Cas9 to rectify the mutation in the patient's iPSC line. The resulting iPSC lines expressed pluripotency markers, underwent differentiation into all three embryonic germ layers, maintained a normal karyotype, and lacked reprogramming viral vectors. These iPSC lines serve as a model for delving into the mechanisms of DCM and hold promise for the development of personalized therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2024.103308DOI Listing

Publication Analysis

Top Keywords

ipsc lines
12
dilated cardiomyopathy
8
ipsc
5
generation patient-specific
4
patient-specific ipsc
4
ipsc cell
4
cell cardiac
4
cardiac arrhythmias
4
arrhythmias dilated
4
cardiomyopathy cbrculi016-a
4

Similar Publications

Background: Aniridia is a rare panocular disease caused by gene mutation in the PAX6, which is essential for eye development. Aniridia is inherited in an autosomal dominant manner, but its phenotype can vary significantly among individuals with the same mutation. Animal models, such as drosophila, zebrafish, and rodents, have been used to study aniridia through Pax6 deletions.

View Article and Find Full Text PDF

Generation and heterozygous repair of human iPSC lines from two individuals with the neurodevelopmental disorder, TRAPPC4 deficiency.

Stem Cell Res

December 2024

Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia. Electronic address:

A rare neurodevelopmental disorder has been linked to a well-conserved splice site variant in the TRAPPC4 gene (c.454 + 3A > G), which causes mis-splicing of TRAPPC4 transcripts and reduced levels of TRAPPC4 protein. Patients present with severe progressive neurological symptoms including seizures, microcephaly, intellectual disability and facial dysmorphism.

View Article and Find Full Text PDF

Developmental anomalies of the hearing organ, the cochlea, are diagnosed in approximately one-fourth of individuals with congenital. The majority of patients with cochlear malformations remain etiologically undiagnosed due to insufficient knowledge about underlying genes or the inability to make conclusive interpretations of identified genetic variants. We used exome sequencing for the genetic evaluation of hearing loss associated with cochlear malformations in three probands from unrelated families deafness.

View Article and Find Full Text PDF

The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic GC repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy.

View Article and Find Full Text PDF

The MIR-NAT MAPT-AS1 does not regulate Tau expression in human neurons.

PLoS One

January 2025

Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium.

The MAPT gene encodes Tau protein, a member of the large family of microtubule-associated proteins. Tau forms large insoluble aggregates that are toxic to neurons in several neurological disorders, and neurofibrillary Tau tangles represent a key pathological hallmark of Alzheimer's disease (AD) and other tauopathies. Lowering Tau expression levels constitutes a potential treatment for AD but the mechanisms that regulate Tau expression at the transcriptional or translational level are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!