Exploring graded profiles of hippocampal atrophy along the anterior-posterior axis in semantic dementia and Alzheimer's disease.

Neurobiol Aging

The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia; The University of Sydney, School of Psychology, Sydney, New South Wales, Australia. Electronic address:

Published: March 2024

Mounting evidence indicates marked hippocampal degeneration in semantic dementia (SD) however, the spatial distribution of hippocampal atrophy profiles in this syndrome remains unclear. Using a recently developed parcellation approach, we extracted hippocampal volumes from four distinct subregions running from anterior to posterior along the longitudinal axis (anterior, intermediate rostral, intermediate caudal, and posterior). Volumetric differences in hippocampal subregions were compared between 21 SD, 24 matched Alzheimer's disease (AD), and 27 healthy older Control participants. Despite comparable overall hippocampal volume loss, SD and AD groups diverged in terms of the magnitude of atrophy along the anterior-posterior axis of the hippocampus. Global hippocampal atrophy was observed in AD, with no discernible gradation or lateralisation. In contrast, SD patients displayed graded bilateral hippocampal atrophy, most pronounced on the left-hand side, and concentrated in anterior relative to posterior subregions. Finally, we found preliminary evidence that disease-specific vulnerability along the anterior-posterior axis of the hippocampus was associated with canonical clinical features of these syndromes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2024.01.004DOI Listing

Publication Analysis

Top Keywords

hippocampal atrophy
16
anterior-posterior axis
12
hippocampal
8
atrophy anterior-posterior
8
semantic dementia
8
alzheimer's disease
8
axis hippocampus
8
atrophy
5
exploring graded
4
graded profiles
4

Similar Publications

Neurodegeneration is presumed to be the pathological process measure most proximal to clinical symptom onset in Alzheimer Disease (AD). Structural MRI is routinely collected in research and clinical trial settings. Several quantitative MRI-based measures of atrophy have been proposed, but their low correspondence with each other has been previously documented.

View Article and Find Full Text PDF

Temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) is associated with a complex genetic architecture, but the translation from genetic risk factors to brain vulnerability remains unclear. Here, we examined associations between epilepsy-related polygenic risk scores for HS (PRS-HS) and brain structure in a large sample of neurotypical children, and correlated these signatures with case-control findings in in multicentric cohorts of patients with TLE-HS. Imaging-genetic analyses revealed PRS-related cortical thinning in temporo-parietal and fronto-central regions, strongly anchored to distinct functional and structural network epicentres.

View Article and Find Full Text PDF

Background: Degeneration of the basal forebrain cholinergic system is a hallmark feature shared by Alzheimer's disease (AD) and Lewy body disease (LBD) whereas hippocampus atrophy is more specifically related to AD. We aimed to investigate the relationship between basal forebrain and hippocampus atrophy, cognitive decline, and neuropathology in a large autopsy sample.

Methods: Data were obtained from the National Alzheimer's Coordinating Center (NACC).

View Article and Find Full Text PDF

Trans-active response DNA-binding protein-43 (TDP-43) is the major pathological protein in motor neuron disease and TDP-43 pathology has been described in the brains of up to 50% of patients with Alzheimer disease (AD). Hippocampal sclerosis of aging (HS-A), an age-related neuropathology characterized by severe neuronal loss and gliosis in CA1 and/or subiculum, is found in ∼80% of cases that are positive for phosphorylated TDP-43. HS-A is seen as a co-pathology in cases with AD, limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC), and frontotemporal degeneration.

View Article and Find Full Text PDF

Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.

Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!