Due to the cardiotoxicity of doxorubicin (DOX), its clinical application is limited. Lipid peroxidation caused by excessive ferrous iron is believed to be a key molecular mechanism of DOX-induced cardiomyopathy (DIC). Dexrazoxane (DXZ), an iron chelator, is the only drug approved by the FDA for reducing DIC, but it has many side effects and cannot be used as a preventive drug in clinical practice. Single-nucleus RNA sequencing (snRNA-seq) analysis identified myocardial and epithelial cells that are susceptible to DOX-induced ferroptosis. The glutathione peroxidase 4 (GPX4) activator selenomethione (SeMet) significantly reduced polyunsaturated fatty acids (PUFAs) and oxidized lipid levels in vitro. Consistently, SeMet significantly decreased DOX-induced lipid peroxidation in H9C2 cells and mortality in C57BL/6 mice compared to DXZ, ferrostatin-1, and normal saline. SeMet can effectively reduce serum markers of cardiac injury in C57BL/6 mice and breast cancer patients. Depletion of the GPX4 gene in C57BL/6 mice resulted in an increase in polyunsaturated fatty acid (PUFA) levels and eliminated the protective effect of SeMet against DIC. Notably, SeMet exerted antitumor effects on breast cancer models with DOX while providing cardiac protection for the same animal without detectable toxicities. These findings suggest that pharmacological activation of GPX4 is a valuable and promising strategy for preventing the cardiotoxicity of doxorubicin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827549PMC
http://dx.doi.org/10.1016/j.redox.2023.103024DOI Listing

Publication Analysis

Top Keywords

c57bl/6 mice
12
pharmacological activation
8
activation gpx4
8
cardiotoxicity doxorubicin
8
lipid peroxidation
8
polyunsaturated fatty
8
breast cancer
8
semet
5
gpx4
4
gpx4 ameliorates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!