Cortical function is under constant modulation by internally-driven, latent variables that regulate excitability, collectively known as 'cortical state'. Despite a vast literature in this area, the estimation of cortical state remains relatively ad hoc, and not amenable to real-time implementation. Here, we implement robust, data-driven, and fast algorithms that address several technical challenges for online cortical state estimation.. We use unsupervised Gaussian mixture models to identify discrete, emergent clusters in spontaneous local field potential signals in cortex. We then extend our approach to a temporally-informed hidden semi-Markov model (HSMM) with Gaussian observations to better model and infer cortical state transitions. Finally, we implement our HSMM cortical state inference algorithms in a real-time system, evaluating their performance in emulation experiments.. Unsupervised clustering approaches reveal emergent state-like structure in spontaneous electrophysiological data that recapitulate arousal-related cortical states as indexed by behavioral indicators. HSMMs enable cortical state inferences in a real-time context by modeling the temporal dynamics of cortical state switching. Using HSMMs provides robustness to state estimates arising from noisy, sequential electrophysiological data.. To our knowledge, this work represents the first implementation of a real-time software tool for continuously decoding cortical states with high temporal resolution (40 ms). The software tools that we provide can facilitate our understanding of how cortical states dynamically modulate cortical function on a moment-by-moment basis and provide a basis for state-aware brain machine interfaces across health and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868597 | PMC |
http://dx.doi.org/10.1088/1741-2552/ad1f7b | DOI Listing |
Curr Neuropharmacol
January 2025
2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland.
The dorsolateral prefrontal cortex (dlPFC) is increasingly targeted by various noninvasive transcranial magnetic stimulation or transcranial current stimulation protocols in a range of neuropsychiatric and other brain disorders. The rationale for this therapeutic modulation remains elusive. A model is proposed, and up-to-date evidence is discussed, suggesting that the dlPFC is a high-level cortical centre where uncertainty management, movement facilitation, and cardiovascular control processes are intertwined and integrated to deliver optimal behavioural responses in particular environmental or emotional contexts.
View Article and Find Full Text PDFPain Rep
February 2025
Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan.
Introduction: Chronic low back pain (CLBP) is a global health issue, and its nonspecific causes make treatment challenging. Understanding the neural mechanisms of CLBP should contribute to developing effective therapies.
Objectives: To compare current source density (CSD) and functional connectivity (FC) extracted from resting electroencephalography (EEG) between patients with CLBP and healthy controls and to examine the correlations between EEG indices and symptoms.
Am J Biol Anthropol
January 2025
Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA.
Objectives: Most human brains exhibit left hemisphere asymmetry for planum temporale (PT) surface area and gray matter volume, which is interpreted as cerebral lateralization for language. Once considered a uniquely human feature, PT asymmetries have now been documented in chimpanzees and olive baboons. The goal of the current study was to further investigate the evolution of PT asymmetries in nonhuman primates.
View Article and Find Full Text PDFJ Headache Pain
January 2025
Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.
Background: Neuroimaging studies have shown that hypothalamic/thalamic nuclei and other distant brain regions belonging to complex cerebral networks are involved in cluster headache (CH). However, the exact relationship between these areas, which may be dependent or independent, remains to be understood. We investigated differences in resting-state functional connectivity (FC) between brain networks and its relationship with the microstructure of the hypothalamus and thalamus in patients with episodic CH outside attacks and healthy controls (HCs).
View Article and Find Full Text PDFCogn Affect Behav Neurosci
January 2025
Department of Psychological Sciences, Rice University, Houston, TX, 77005, USA.
In a sequence, at least two aspects of information-the identity of items and their serial order-are maintained and supported by distinct working memory (WM) capacities. Verbal serial order WM is modulated by spatial processing, reflected in the Spatial Position Association of Response Codes (SPoARC) effect-the left-beginning, right-end positional association between space and serial position of verbal WM memoranda. We investigated the individual differences in this modulation with both behavioral and neurobiological approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!