Uneven Strain Distribution Induces Consecutive Dislocation Slipping, Plane Gliding, and Subsequent Detwinning of Penta-Twinned Nanoparticles.

Nano Lett

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Published: January 2024

Twin structures possess distinct physical and chemical properties by virtue of their specific twin configuration. However, twinning and detwinning processes are not fully understood on the atomic scale. Integrating high resolution transmission electron microscopy and molecular dynamic simulations, we find tensile strain in the asymmetrical 5-fold twins of Au nanoparticles leads to twin boundary migration through dislocation sliding (slipping of an atomic layer) along twin boundaries and dislocation reactions at the 5-fold axis under an electron beam. Migration of one or two layers of twin planes is governed by energy barriers, but overall, the total energy, including surface, lattice strain, and twin boundary energy, is relaxed after consecutive twin boundary migration, leading to a detwinning process. In addition, surface rearrangement of 5-fold twinned nanoparticles can aid in the detwinning process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c03788DOI Listing

Publication Analysis

Top Keywords

twin boundary
12
boundary migration
8
detwinning process
8
twin
7
uneven strain
4
strain distribution
4
distribution induces
4
induces consecutive
4
consecutive dislocation
4
dislocation slipping
4

Similar Publications

Deformation behavior of additive manufactured 316 L stainless steel using in situ neutron diffraction.

Sci Rep

January 2025

Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China.

Manufacturing of metallic components using additive manufacturing technique is of great interest for the industrial applications. Here, the mechanical and microstructural responses of a 316 L stainless steel (316LSS) built by selective laser melting (SLM) with XOY and XOZ directions were revealed by performing in situ neutron diffraction tensile tests. The tensile strength of the XOY-printed samples reaches 700 MPa, while the tensile strength of the XOZ-printed samples is less than 600 MPa.

View Article and Find Full Text PDF

Enhanced Mechanical Properties in Bulk Nanograined Ni with High-Density Fivefold Twins.

Small

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.

Fivefold twins are extensively present in nanoparticles and nanowires, enhancing their performance in physical, chemical, and mechanical properties. However, a deep insight into the correlation between mechanical properties and fivefold twins in bulk nanograined materials is lacking due to synthesis difficulties. Here, a bulk fivefold-twinned nanograined Ni is synthesized via electrodeposition.

View Article and Find Full Text PDF

Organics electrooxidation coupled hydrogen production has attracted increasing attention due to the low operation voltage. Nevertheless, the spontaneous production of hydrogen coupled with organics valorization remains challenging. Herein, we develop ultrathin Au/Pt twin nanowire (NW) catalysts for both electrochemical glucose oxidation and hydrogen evolution reaction towards a spontaneous hydrogen production system.

View Article and Find Full Text PDF

Nanotwin-Induced Ferrimagnetism in an Antiferromagnetic CrO Thin Film on the SrTiO Substrate.

ACS Nano

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.

Nanotwinned materials have recently attracted intense interest since they often exhibit excellent mechanical properties that are far superior to those of the corresponding single crystals. However, how nanotwinned structures affect the physical properties of functional materials remains almost unexplored. In this study, we demonstrate ferrimagnetism in a nanotwinned antiferromagnetic CrO thin film.

View Article and Find Full Text PDF

Nanoparticulate electrocatalysts for the oxygen reduction reaction are structurally diverse materials. Scanning transmission electron microscopy (STEM) has long been the go-to tool to obtain high-quality information about their nanoscale structure. More recently, its four-dimensional modality has emerged as a tool for a comprehensive crystal structure analysis using large data sets of diffraction patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!