In situ synthesis of AgI on the nanosilica surface for potential application as a cloud seeding material.

Chemphyschem

Department of Physical and Physico-chemical Methods of Mineral Processing, Institute of Geotechnics SAS, Watsonova 45, 04001, Kosice, Slovak Republic.

Published: March 2024

A series of nanosilica/AgI composites was synthesized by in situ reactions between silver nitrate and ammonium iodide deposited on the nanosilica surface using the gas-phase solvate-stimulated mechanosorption modification (GSSMSM) under both dry and wet conditions. The characterization of the synthesized materials was performed by X-ray diffraction (XRD), SEM/EDX (Scanning Electron Microscopy-Energy Dispersive X-ray), thermogravimetric (TGA) and gas sorption methods. As a result of the mechanosorption modification of nanosilica, the bulk density of the samples synthesized in the dry and wet medium increases from 45 g/l for initial nanosilica to 249 g/l and 296 g/l for the modified samples, respectively. The specific surface area of the composites decreased in compared to the nanosilica precursor. The SEM data showed a denser aggregate structure of the nanocomposites compared to the initial nanosilica. The XRD, SEM/EDX and TEM/EDX data indicated the formation of AgI clusters. The AgI particle size was in the range of 6-45 nm. The ice-forming activity of the AgI-containing samples was examined as well. The sample with a smaller size of silver iodide on the surface exhibited superior ice-forming properties, and considering the quantity of utilized AgI, the prepared samples hold promise for application in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202300820DOI Listing

Publication Analysis

Top Keywords

nanosilica surface
8
mechanosorption modification
8
dry wet
8
xrd sem/edx
8
initial nanosilica
8
nanosilica
6
situ synthesis
4
agi
4
synthesis agi
4
agi nanosilica
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!