IgMs are the first antibodies produced by the immune system upon encounter of a possible pathogen and are one of five antibody subclasses in humans. For IgG, the most intensively studied antibody class, the N-linked glycosylation site located in the Fc-domain is directly involved in high affinity binding to the respective receptors and initiation of corresponding immune response. IgM molecules have five N-glycosylation sites and one N-glycosylation site in the J-chain, which can be incorporated in IgM or IgA molecules. There is only limited knowledge available concerning the function of these N-glycosylations in IgMs. To address this question, we produced IgM molecules lacking a particular N-glycosylation site and tested these variants as well as IgA molecules for binding to the known receptors: the polymeric immunoglobulin receptor (pIgR), the dual receptor for IgA and IgM, FcαμR, and the specific receptor for IgM, FcμR. The single glycosylation sites did not show an impact on expression and multimerization, except for variant N402Q, which could not be expressed. In SPR measurements, no major impact on the binding to the receptors by particular glycosylation sites could be detected. In cellular assays, deglycosylated variants showed some alterations in induction of CDC activity. Most strikingly, we observed also binding of IgA to the FcμR in the same affinity range as IgM, suggesting that this might have a physiological role. To further substantiate the binding of IgA to FcμR we used IgA from different origins and were able to confirm binding of IgA preparations to the FcμR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apm.13377 | DOI Listing |
Antiviral Res
January 2025
School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety. Electronic address:
IgA antibodies are critical components of the mucosal immune barrier, providing essential first-line defense against viral infections. In this study, we investigated the impact of antibody class switching on neutralization efficacy by engineering recombinant antibodies of different isotypes (IgA1, IgG1) with identical variable regions from SARS-CoV-2 convalescent patients. A potent, broad-spectrum neutralizing monoclonal antibody CAV-C65 exhibited a ten-fold increase in neutralization potency upon switching from IgG1 to IgA1 monomer.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Yale School of Medicine Department of Neurology, New Haven, CT.
Background And Objectives: Gut microbial symbionts have been shown to influence the development of autoimmunity in multiple sclerosis (MS). Emerging research points to an important relationship between the microbial-IgA interface and MS pathophysiology. IgA-secreting B cells are observed in the MS brain, and shifts in gut bacteria-IgA binding have been described in some patients with MS.
View Article and Find Full Text PDFJ Immunother Precis Oncol
February 2025
Department of Pediatrics, Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Houston, TX, USA.
Immunoglobulins (Igs) are produced by B lymphocytes and play a key role in humoral immunity. Igs are classified into five isotypes (IgG, IgA, IgM, IgE, and IgD). Their primary function is to recognize and bind to foreign antigens.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK.
During the COVID-19 pandemic, heterologous vaccination strategies were employed to alleviate the strain on vaccine supplies. The Thailand Ministry of Health adopted these strategies using vector, inactivated, and mRNA vaccines. However, this approach has introduced challenges for SARS-CoV-2 sero-epidemiology studies.
View Article and Find Full Text PDFAntiviral Res
January 2025
Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA. Electronic address:
Dengue virus (DENV) is a rapidly expanding infectious disease threat that causes an estimated 100 million symptomatic infections every year. A barrier to preventing DENV infections with traditional vaccines or prophylactic monoclonal antibody (mAb) therapies is the phenomenon of Antibody-Dependent Enhancement (ADE), wherein sub-neutralizing levels of DENV-specific IgG antibodies can enhance infection and pathogenesis rather than providing protection from disease. Fortunately, IgG is not the only antibody isotype capable of binding and neutralizing DENV, as DENV-specific IgA1 isotype mAbs can bind and neutralize DENV while without exhibiting any ADE activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!