In this study, a new strategy was adopted for obtaining polymer/protein hybrid hydrogels with shape stability and tunable mechanical or rheological characteristics by using non-toxic procedures. A chemical network was created using a poly(vinyl alcohol)(PVA)/bovine serum albumin (BSA) mixture in aqueous solution in the presence of genipin and reduced glutathione (GSH). Then, a second physical network was formed through PVA after applying freezing/thawing cycles. In addition, the protein macromolecules formed intermolecular disulfide bridges in the presence of GSH. In these conditions, multiple crosslinked networks were obtained, determining the strengthening and stiffening into relatively tough porous hydrogels with tunable viscoelasticity and a self-healing ability. A SEM analysis evidenced the formation of networks with interconnected pores of sizes between 20 μm and 50 μm. The mechanical or rheological investigations showed that the hydrogels' strength and response in different conditions of deformation were influenced by the composition and crosslinking procedure. Thus, the dynamics of the hybrid hydrogels can be adjusted to mimic the viscoelastic properties of the native tissues. The dynamic water vapor-sorption ability, swelling behavior in an aqueous environment, and bioadhesive properties were also investigated and are discussed in this paper. The hybrid hydrogels with tunable viscoelasticity can be designed on request, and they are promising candidates for tissue engineering, bioinks, and wound dressing applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708397 | PMC |
http://dx.doi.org/10.3390/polym15234611 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
Although tissue engineering science has made great progress, wound healing has remained a significant clinical challenge, especially in cases of severe injuries requiring advanced treatment strategies. This study aimed to develop patient-friendly in situ gelling nanofibers composed of oxidized carboxymethyl cellulose (OCMC) and gelatin for wound healing applications. A two-axial electrospinning technique was employed to fabricate OCMC/PVA-Gelatin hybrid nanofibers.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Institut Europeen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095, Montpellier, France. Electronic address:
Current bacterial infections clinical treatments, such as intravenous antibiotic administration and local injection, suffer from short action duration, repeated administrations, and severe cell toxicity. To address these limitations, it is imperative to develop sustained drug release system with prolonged antimicrobial effects. In this work, a hybrid system was prepared using EDC/NHS catalyzed crosslinking-based carboxymethyl chitosan (CMCS) hydrogel as a carrier to encapsulate biodegradable nanoparticles (NPs) loaded with vancomycin, an efficient antibacterial drug.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:
Metal-organic cages (MOCs), assembled by the coordination of metal nodes with organic ligands, offer excellent solvent dispersion, functionalization potential, and abundant binding sites, making them ideal for hybrid hydrogel synthesis. Herrin, a novel Zr-MOC/CS hybrid hydrogel was developed by crosslinking Zr-based metal-organic cages (Zr-MOC) and chitosan (CS) using dibenzaldehyde-functionalized polyethylene glycol (DF-PEG) as crosslinker, marking the first instance of incorporating Zr-MOC into a hydrogel matrix. The composite hydrogel leverages the catalytic activity of Zr-MOC to convert trace HO into hydroxyl radicals (·OH), delivering enhanced antibacterial performance.
View Article and Find Full Text PDFJ Neurosurg
January 2025
19Division of Medical Statistics, Division of Data Science, Foundation for Biomedical Research and Innovation at Kobe; and.
Objective: Studies have demonstrated the effectiveness of hydrogel-coated coils (HGCs) to achieve the composite endpoint of decreased recanalization rates and greater safety. Herein, the authors aimed to assess the true ability of second-generation HGCs to prevent recanalization.
Methods: This randomized controlled study, the HYBRID (Hydrocoil Versus Bare Platinum Coil in Recanalization Imaging Data) trial, comparing HGCs with bare platinum coils (BPCs), was conducted in 43 Japanese institutions.
J Anat
January 2025
Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG) Royal College of Surgeons Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland.
According to the World Health Organization (WHO) musculoskeletal conditions are a leading contributor to disability worldwide. This fact is often somewhat overlooked, since musculoskeletal conditions are less likely to be associated with mortality. Nonetheless, treatments, therapies and management of these conditions are extremely costly to national healthcare systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!