We present synthetic experiments of lactic acid (LA) polycondensation to produce poly(lactic acid) (PLA) as well as kinetic modeling calculations that capture the polymer molecular weight increase with time, given the initial concentrations. Tin-octoate-catalyzed polycondensation of (D,L)- or L-lactic acid was carried out in pre-dried toluene after azeotropic dehydration for 48-120 h at 130-137 °C. The polymerization was optimized by varying lactic acid and catalyst concentrations as well as the temperature. Gel permeation chromatography was used to experimentally follow the evolution of molecular weights and the products were characterized by NMR, TGA, DSC and IR. Under optimal conditions, PLLA with weight-average molecular weight () of 161 kDa could be obtained. The rate equations that describe polycondensation kinetics were recast in a condensed form that allowed very fast numerical solution and calculation of the number-average molecular weight with time. Deviations with respect to the experiment were minimized in a least-squares fashion to determine rate constants. The optimized kinetics parameters are shown to reproduce the experimental data accurately.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708065 | PMC |
http://dx.doi.org/10.3390/polym15234569 | DOI Listing |
Mol Divers
January 2025
Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
Nanobodies or variable antigen-binding domains (VH) derived from heavy chain-only antibodies (HcAb) occurring in the Camelidae family offer certain superior physicochemical characteristics like enhanced stability, solubility, and low immunogenicity compared to conventional antibodies. Their efficient antigen-binding capabilities make them a preferred choice for next-generation small biologics. In the present work, we design an anti-SARS-CoV-2 bi-paratopic nanobody drug conjugate by screening a nanobody database.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
The atmospheric dicarboxylic acids (DCAs) have a significant impact on the climate and indirectly affect human health, making them important organic substances. PM bound DCAs were analysed for Jorhat, India, 2019. In addition to the temporal variability, seasonal variation throughout the year and the impact of varying meteorological factors on DCAs concentration have also been studied.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, GT Road, Moga, 142001, Punjab, India.
In examining the enduring consequences of diabetes, recent research has focused on the anticipated outcomes of the condition. Specifically, cognitive impairment has been linked to diabetes mellitus dating back to the discovery of insulin. This study delves into the neuroprotective effects of TZP, i.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo, Egypt.
The herbal extracts of four traditional plants; namely leaves, fruits leaves, and seeds, were identified for their main constituents using UHPLC/QTOF-MS/MS. Then, a pharmacology-based analysis and molecular docking verification were established targeting the evaluation of each individual herbal extract for their antidiabetic/anti-obesity potential besides their safety. Streptozotocin-induced diabetic rats were used to evaluate antiobesity and insulinotropic effects against insulin (10 U/Kg, IP) and metformin (100 mg/Kg, per oral) as standard regimens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!