The anti-digestibility of resistant dextrin (RD) and resistant maltodextrin (RMD) is usually significantly affected by processing techniques, reaction conditions, and starch sources. The objective of this investigation is to elucidate the similarities and differences in the anti-digestive properties of RD and RMD prepared from three different tuber crop starches, namely, potato, cassava, and sweet potato, and to reveal the associated mechanisms. The results show that all RMDs have a microstructure characterized by irregular fragmentation and porous surfaces, no longer maintaining the original crystalline structure of starches. Conversely, RDs preserve the structural morphology of starches, featuring rough surfaces and similar crystalline structures. RDs exhibite hydrolysis rates of approximately 40%, whereas RMDs displaye rates lower than 8%. This disparity can be attributed to the reduction of α-1,4 and α-1,6 bonds and the development of a highly branched spatial structure in RMDs. The indigestible components of the three types of RDs range from 34% to 37%, whereas RMDs vary from 80% to 85%, with potato resistant maltodextrin displaying the highest content (84.96%, < 0.05). In conclusion, there are significant differences in the processing performances between different tuber crop starches. For the preparation of RMDs, potato starch seems to be superior to sweet potato and cassava starches. These attributes lay the foundation for considering RDs and RMDs as suitable components for liquid beverages, solid dietary fiber supplements, and low glycemic index (low-GI) products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708145 | PMC |
http://dx.doi.org/10.3390/polym15234545 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!