Recent Progress of 3D Printing of Polymer Electrolyte Membrane-Based Fuel Cells for Clean Energy Generation.

Polymers (Basel)

Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia.

Published: November 2023

This review summarizes recent advances in the application of 3D printing (additive manufacturing) for the fabrication of various components of hydrogen fuel cells with a polymer electrolyte membrane (HFC-PEMs). This type of fuel cell is an example of green renewable energy, but its active implementation into the real industry is fraught with a number of problems, including rapid degradation and low efficiency. The application of 3D printing is promising for improvement in HFC-PEM performance due to the possibility of creating complex geometric shapes, the exact location of components on the substrate, as well as the low-cost and simplicity of the process. This review examines the use of various 3D printing techniques, such as inkjet printing, fused deposition modeling (FDM) and stereolithography, for the production/modification of electrodes, gas diffusion and catalyst layers, as well as bipolar plates. In conclusion, the challenges and possible solutions of the identified drawbacks for further development in this field of research are discussed. It is expected that this review article will benefit both representatives of applied science interested in specific engineering solutions and fundamental science aimed at studying the processes occurring in the fuel cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708036PMC
http://dx.doi.org/10.3390/polym15234553DOI Listing

Publication Analysis

Top Keywords

polymer electrolyte
8
fuel cells
8
application printing
8
fuel cell
8
progress printing
4
printing polymer
4
electrolyte membrane-based
4
fuel
4
membrane-based fuel
4
cells clean
4

Similar Publications

Background: Disinfection of the root canal system is a challenge to all clinicians, calcium hydroxide Ca(OH) one of the most popular intracanal medications used for this purpose, has some unwanted effects on dentine. This study aimed to investigate the antibiofilm effect of Nanochitosan (CSNPs) and Calcium hydroxide Ca(OH) intra canal medications and their effect on the microhardness and chemical structure of radicular dentine.

Methodology: A total of 52 extracted human mandibular premolars were used.

View Article and Find Full Text PDF

Objectives: This study aimed to determine whether incorporating nanostructured additives into bleaching agents enhances efficacy and reduces side effects while identifying gaps for further investigation.

Methods: A comprehensive search was conducted in electronic databases, including PubMed/Medline, Embase, Scopus, and ISI Web of Science. Two reviewers independently screened articles based on predefined criteria, resolving discrepancies through discussion or consultation with a third reviewer.

View Article and Find Full Text PDF

Reactive oxygen species with evoked immunotherapy holds tremendous promise for cancer treatment but has limitations due to its dependence on exogenous excitation and/or endogenous HO and O. Here we report a versatile oxidizing pentavalent bismuth(V) nanoplatform (NaBiO-PEG) can generate reactive oxygen species in an excitation-free and HO- and O-independent manner. Upon exposure to the tumor microenvironment, NaBiO-PEG undergoes continuous H-accelerated hydrolysis with •OH and O generation through electron transfer-mediated Bi-to-Bi conversion and lattice oxygen transformation.

View Article and Find Full Text PDF

D-Histidine modulated chiral metal-organic frameworks for discriminating 3,4-Dihydroxyphenylalanine enantiomers based on a chemiluminescence quenching mode.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:

Background: Drug enantiomers often display distinguishable or even opposite pharmacological and toxicologic activities. Therefore it is of great necessity to discriminate enantiomers for guaranteeing safetyness and effectiveness of chiral drugs. Facile chiral discrimination has long been a noticeable challenge because of the minimal differences in physicochemical properties of enantiomers.

View Article and Find Full Text PDF

BiS/BiO(OH) nanorods with internal electric field throughout the entire bulk phase as photoelectrochemical sensing platforms for CYFRA21-1 immunoassay.

Anal Chim Acta

February 2025

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, 250022, Jinan, PR China; Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea. Electronic address:

Photoelectrochemical (PEC) immunosensors are highly promising tools for monitoring biochemical molecules. Constructing high-performance heterojunctions is a general method to improve the sensitivity of PEC immunosensors. The internal electric field (IEF) formed at the heterojunction interface plays a crucial role in coordinating the separation of photogenerated carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!