In the present study, sage-coated zinc-doped hydroxyapatite was incorporated into a dextran matrix (7ZnHAp-SD), and its physico-chemical and antimicrobial activities were investigated. A 7ZnHAp-SD nanocomposite suspension was obtained using the co-precipitation method. The stability of the nanocomposite suspension was evaluated using ultrasound measurements. The stability parameter calculated relative to double-distilled water as a reference fluid highlights the very good stability of the 7ZnHAp-SD suspension. X-ray diffraction (XRD) experiments were performed to evaluate the characteristic diffraction peak of the hydroxyapatite phase. Valuable information regarding the morphology and chemical composition of 7ZnHAp-SD was obtained via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) studies. Fourier-transform infrared spectroscopy (FTIR) measurements were performed on the 7ZnHAp-SD suspensions in order to evaluate the functional groups present in the sample. Preliminary studies on the antimicrobial activity of 7ZnHAp-SD suspensions against the standard strains of 25923 ATCC, 29212 ATCC, 25922 ATCC, and 27853 ATCC were conducted. More than that, preliminary studies on the biocompatibility of 7ZnHAp-SD were conducted using human cervical adenocarcinoma (HeLa) cells, and their results emphasized that the 7ZnHAp-SD sample did not exhibit a toxic effect and did not induce any noticeable changes in the morphological characteristics of HeLa cells. These preliminary results showed that these nanoparticles could be possible candidates for biomedical/antimicrobial applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708102 | PMC |
http://dx.doi.org/10.3390/polym15234484 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!