Carbon fiber-reinforced epoxy resin composites have poor high temperature resistance and are prone to thermal damage during service in the aerospace field. The purpose of this study was to evaluate the thermal decomposition (pyrolysis) characteristics of carbon fiber-reinforced epoxy composites and reasonably predict their thermal decomposition under arbitrary temperature conditions. The kinetic analysis was conducted on the thermal decomposition of carbon fiber-reinforced epoxy resin composites (USN15000/9A16/RC33, supplied by Weihai GuangWei Composites Co., Ltd. Weihai City, Shandong Province, China) under a nitrogen environment, and an improved model of pyrolysis prediction suitable for the arbitrary temperature program was developed in this work. The results showed that the carbon fiber-reinforced epoxy composites begin to degrade at about 500 K, and the peak value of the weight loss rate at the respective heating rate appears in the range of 650 K to 750 K. A single-step reaction can characterize the thermal decomposition of carbon fiber-reinforced epoxy composites in a nitrogen atmosphere, and a wide variety of isoconversional approaches can be used for the calculation of the kinetic parameters. The proposed model of pyrolysis prediction can avoid numerous limitations of temperature integration, and it shows good prediction accuracy by reducing the temperature rise between sampling points. This study provides a reference for the kinetic analysis and pyrolysis prediction of carbon fiber-reinforced epoxy composites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708016 | PMC |
http://dx.doi.org/10.3390/polym15234533 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
As a high-performance cermet, TiCN possesses extensive potential for application in various fields, including coating materials, ceramic products, and electronic materials. Here, the effects of temperature and pressure on the physical properties of the TiCN cermet have been investigated by high-pressure techniques and first-principles calculations. Experimentally, the phase, microstructure, mechanical properties, and electrical conductivity of bulk TiCN ceramics were analyzed.
View Article and Find Full Text PDFMethodsX
December 2024
Department of Mechanical Engineering, Sharad Institute of Technology, College of Engineering, Yadrav, Ichalkaranji, Maharashtra, India.
This research aims to improve the accuracy of cutting fiber-reinforced polymers (FRPs) utilizing CO2 laser processing techniques, with a particular focus on carbon-glass fiber-reinforced hybrid composites (CGFRP) using epoxy resin. Establishing CO laser machining as a dependable and effective process for creating superior CGFRP components is the main goal. This research intends to optimize laser machining parameters to enhance surface quality and machining efficiency for these composites by a thorough parametric analysis.
View Article and Find Full Text PDFHeliyon
December 2024
School of Civil and Architectural Engineering, Anyang institute of technology, Anyang, 454003, China.
To enhance the carbonation resistance of reclaimed concrete, several key factors affecting its performance were investigated. An orthogonal array (4³ × 2⁶) was employed to design the carbonation tests for steel fiber (SF) reinforced concrete. The study included varying SF volume ratios, along with considerations of different concrete ages (T) and water-cement ratios (W/R).
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
Recent advancements in novel fiber-coupled and portable terahertz (THz) spectroscopic imaging technology have accelerated applications in nondestructive testing (NDT). Although the polarization information of THz waves can play a critical role in material characterization, there are few demonstrations of polarization-resolved THz imaging as an NDT modality due to the deficiency of such polarimetric imaging devices. In this paper, we have inspected industrial carbon fiber composites using a portable and handheld imaging scanner in which the THz polarizations of two orthogonal channels are simultaneously captured by two photoconductive antennas.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Civil Engineering, Technische Universität Berlin, G.-Meyer-Alle 25, 13355 Berlin, Germany.
The main aim of the study was the determination of the strength parameters of composite bonded joints consisting of galvanised steel elements, an adhesive layer, and Carbon-Fiber-Reinforced Plastic (CFRP) fabric. For this purpose, shear laboratory tests were carried out on 60 lapped specimens composed of 2 mm thick hot-dip galvanised steel plates of S350 GD. The specimens were overlapped on one side with SikaWrap 230 C carbon fibre textile (CFT) using SikaDur 330 adhesive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!