Plastic waste has become a big problem for the environment globally. Biodegradable polymers are a potential replacement for plastics that can have a positive outcome both environmentally and economically. In this work, we used acid hydrolysis and alkaline treatment to extract cellulose fibers from cattails. The obtained cellulose was used as a substrate for the fabrication of cellulose film using a casting technique on plastic plates. Different concentrations of the plasticizer, glycerol, were used to prepare films for comparison, and its effects on the film's characteristics were observed. The morphology, chemical structure, and thermal stability of the cattail cellulose (CTC) films were studied using techniques such as scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and thermogravimetric analysis (TGA), respectively. Measurements of transparency, moisture content (MC), water solubility (MS), and water contact angle (WCA) were also performed. Introducing glycerol into the films increased the transparency, MC, and WS values, as well as the gap width between film textures. However, it resulted in a decrease in the WCA of the films, showing that the hydrophilicity of the films is increased by the addition of glycerol. The interaction between the functional groups of cellulose and glycerol was established from the ATR-FTIR and XRD data. The obtained results indicated that glycerol affected the thermal stability and the degree of crystallinity of the produced films. Accordingly, the hydrophilicity of the cellulose film was increased by increasing the glycerol content; therefore, cattail cellulose films can be used as a biodegradable alternative to plastic in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708089 | PMC |
http://dx.doi.org/10.3390/polym15234535 | DOI Listing |
Plant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:
The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China. Electronic address:
From the perspective of sustainable development and practical applications, there is a significant demand for the design of advanced cellulose-based film materials with superior mechanical, optical, and functional properties utilizing environmentally friendly strategies. Herein, biodegradable, mechanically robust and flame-retardant cellulose films with adjustable optical performance were successfully fabricated by in situ synthesis of NH-UiO(Zr)-66 via a DMF-free green process at room temperature. The results indicate that the introduction of NH-UiO(Zr)-66 enables films to realize a desirable flame retardancy (the limiting oxygen index (LOI) increased significantly from 19.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China. Electronic address:
Activated carbon is extensively utilized in blood purification applications. However, its performance has been significantly limited by their poor blood compatibility. In this work, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCN) and activated carbon (AC) were used to form composite beads by the drop curing method to improve hemocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!